Techniques for Designing High Gain and Two‐Dimensional Beam Scanning Antennas for 5G

移相模块 伦勃格透镜 侧面 镜头(地质) 光束转向 天线(收音机) 相(物质) 光学 方位角 缝隙波导 工程类 电子工程 材料科学 辐射模式 电气工程 物理 缝隙天线 插入损耗 量子力学
作者
R. Mittra,Abdelkhalek Nasri,Ravi Kumar Arya,Prashant Chaudhary,James R. Kelly,Shaker Alkaraki,Alejandro L. Borja
标识
DOI:10.1002/9781119813910.ch2
摘要

This chapter presents a number of novel concepts for designing antenna arrays, which achieve high gain levels together with wide-angle scan capability. It begins with the Luneburg lens antenna, which supports beam scanning over a very wide angular range, in both the elevation and azimuthal planes. The scanning feed array design for the lens is discussed next and, following this, a novel hemispherical version of the Luneburg lens is introduced. The next topic covered is the gain enhancement of a slotted waveguide antenna array ( SWAA ), as well as for scanning the array in both the longitudinal and transverse planes, for which a number of options are presented. A key focus of this chapter has been the design of phase shifters that utilize techniques that circumvent the use of conventional phase shifters—ferrite-based for instance—that are both lossy and expensive. The phase shifters proposed herein are based on the use of either electronic switches or vias of liquid metal partially filling drilled holes. Both approaches facilitate modifying the electrical length of the U-shaped waveguides that are inserted between the adjacent radiating elements to provide the requisite phase taper. Finally, the chapter presents an alternate design of a phase shifter based around substrate integrated waveguide ( SIW ) technology, which can be reconfigured by using liquid metal. Phase shifting techniques at both coarse and fine discretization levels have been detailed, and measured as well as simulated results have been included to validate the presented designs. It is anticipated that a number of concepts for the design of wide-angle and gain-enhanced scanning arrays presented in this chapter will be implemented in the near future in 5G systems operating in the millimeter wave regime, where the design challenges abound at present, and where novel concepts are welcomed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Linanana完成签到,获得积分10
刚刚
刚刚
贾舒涵发布了新的文献求助10
刚刚
Sunrise完成签到,获得积分10
1秒前
HH完成签到,获得积分10
2秒前
科研通AI2S应助飞羽采纳,获得10
2秒前
风中寄云完成签到,获得积分20
2秒前
故意的傲玉应助毛慢慢采纳,获得10
2秒前
2秒前
小白发布了新的文献求助10
2秒前
3秒前
3秒前
马尼拉发布了新的文献求助10
4秒前
CodeCraft应助dildil采纳,获得10
4秒前
4秒前
cyanpomelo完成签到 ,获得积分10
5秒前
5秒前
微笑高山完成签到 ,获得积分10
5秒前
文献查找发布了新的文献求助10
5秒前
加油完成签到,获得积分20
6秒前
Sunrise发布了新的文献求助10
6秒前
tabor发布了新的文献求助10
6秒前
唐妮完成签到,获得积分10
6秒前
啵清啵完成签到,获得积分10
7秒前
7秒前
莉莉发布了新的文献求助10
7秒前
8秒前
NexusExplorer应助平常的雁凡采纳,获得10
8秒前
Silverexile完成签到,获得积分10
9秒前
9秒前
唠叨的曼易完成签到,获得积分10
9秒前
Ymj关闭了Ymj文献求助
10秒前
木木雨完成签到,获得积分10
10秒前
10秒前
Harlotte发布了新的文献求助20
10秒前
LINxu发布了新的文献求助10
10秒前
今后应助加油采纳,获得10
10秒前
moonlight发布了新的文献求助10
11秒前
IMkily完成签到,获得积分10
12秒前
深情安青应助sunzhiyu233采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759