Combining Machine Learning and Molecular Simulations to Unlock Gas Separation Potentials of MOF Membranes and MOF/Polymer MMMs

气体分离 材料科学 聚合物 分子动力学 金属有机骨架 气体扩散 扩散 吸附 蒙特卡罗方法 化学工程 纳米技术 化学 热力学 有机化学 计算化学 物理 燃料电池 复合材料 工程类 统计 生物化学 数学
作者
Hilal Daglar,Seda Keskın
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (28): 32134-32148 被引量:76
标识
DOI:10.1021/acsami.2c08977
摘要

Due to the enormous increase in the number of metal-organic frameworks (MOFs), combining molecular simulations with machine learning (ML) would be a very useful approach for the accurate and rapid assessment of the separation performances of thousands of materials. In this work, we combined these two powerful approaches, molecular simulations and ML, to evaluate MOF membranes and MOF/polymer mixed matrix membranes (MMMs) for six different gas separations: He/H2, He/N2, He/CH4, H2/N2, H2/CH4, and N2/CH4. Single-component gas uptakes and diffusivities were computed by grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations, respectively, and these simulation results were used to assess gas permeabilities and selectivities of MOF membranes. Physical, chemical, and energetic features of MOFs were used as descriptors, and eight different ML models were developed to predict gas adsorption and diffusion properties of MOFs. Gas permeabilities and membrane selectivities of 5249 MOFs and 31,494 MOF/polymer MMMs were predicted using these ML models. To examine the transferability of the ML models, we also focused on computer-generated, hypothetical MOFs (hMOFs) and predicted the gas permeability and selectivity of 1000 hMOF/polymer MMMs. The ML models that we developed accurately predict the uptake and diffusion properties of He, H2, N2, and CH4 gases in MOFs and will significantly accelerate the assessment of separation performances of MOF membranes and MOF/polymer MMMs. These models will also be useful to direct the extensive experimental efforts and computationally demanding molecular simulations to the fabrication and analysis of membrane materials offering high performance for a target gas separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zz关闭了Zz文献求助
刚刚
1秒前
西门凡双完成签到,获得积分10
1秒前
maimai完成签到,获得积分10
1秒前
shi0331完成签到,获得积分10
1秒前
yy发布了新的文献求助10
2秒前
曦语完成签到,获得积分20
2秒前
充电宝应助camell采纳,获得10
2秒前
2秒前
五十发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
铭铭铭完成签到,获得积分10
4秒前
CipherSage应助小巧灯泡采纳,获得10
4秒前
猪猪完成签到 ,获得积分10
5秒前
5秒前
虞人达完成签到,获得积分20
6秒前
lixin完成签到,获得积分10
7秒前
小陈发布了新的文献求助10
7秒前
浮游应助义气的书本采纳,获得10
7秒前
隐形曼青应助yc采纳,获得10
8秒前
Dxc发布了新的文献求助10
8秒前
FFz完成签到,获得积分10
8秒前
Druid发布了新的文献求助10
8秒前
小蘑菇应助欢呼的若烟采纳,获得20
8秒前
9秒前
jingjing发布了新的文献求助10
9秒前
斯文败类应助圆滑的铁勺采纳,获得10
10秒前
10秒前
Muncy完成签到 ,获得积分10
10秒前
yu发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
情怀应助yy采纳,获得10
11秒前
12秒前
科研通AI5应助喜多采纳,获得10
12秒前
12秒前
七一安完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4937256
求助须知:如何正确求助?哪些是违规求助? 4204376
关于积分的说明 13065366
捐赠科研通 3982001
什么是DOI,文献DOI怎么找? 2180433
邀请新用户注册赠送积分活动 1196350
关于科研通互助平台的介绍 1108366