Combining Machine Learning and Molecular Simulations to Unlock Gas Separation Potentials of MOF Membranes and MOF/Polymer MMMs

气体分离 材料科学 聚合物 分子动力学 金属有机骨架 气体扩散 扩散 吸附 蒙特卡罗方法 化学工程 纳米技术 化学 热力学 有机化学 计算化学 物理 燃料电池 复合材料 工程类 统计 生物化学 数学
作者
Hilal Daglar,Seda Keskın
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (28): 32134-32148 被引量:76
标识
DOI:10.1021/acsami.2c08977
摘要

Due to the enormous increase in the number of metal-organic frameworks (MOFs), combining molecular simulations with machine learning (ML) would be a very useful approach for the accurate and rapid assessment of the separation performances of thousands of materials. In this work, we combined these two powerful approaches, molecular simulations and ML, to evaluate MOF membranes and MOF/polymer mixed matrix membranes (MMMs) for six different gas separations: He/H2, He/N2, He/CH4, H2/N2, H2/CH4, and N2/CH4. Single-component gas uptakes and diffusivities were computed by grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations, respectively, and these simulation results were used to assess gas permeabilities and selectivities of MOF membranes. Physical, chemical, and energetic features of MOFs were used as descriptors, and eight different ML models were developed to predict gas adsorption and diffusion properties of MOFs. Gas permeabilities and membrane selectivities of 5249 MOFs and 31,494 MOF/polymer MMMs were predicted using these ML models. To examine the transferability of the ML models, we also focused on computer-generated, hypothetical MOFs (hMOFs) and predicted the gas permeability and selectivity of 1000 hMOF/polymer MMMs. The ML models that we developed accurately predict the uptake and diffusion properties of He, H2, N2, and CH4 gases in MOFs and will significantly accelerate the assessment of separation performances of MOF membranes and MOF/polymer MMMs. These models will also be useful to direct the extensive experimental efforts and computationally demanding molecular simulations to the fabrication and analysis of membrane materials offering high performance for a target gas separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孙燕应助byyyy采纳,获得10
2秒前
4秒前
梦红完成签到,获得积分10
7秒前
9秒前
yydragen应助微甜采纳,获得30
10秒前
leonzhou完成签到,获得积分10
13秒前
打打应助shimly0101xx采纳,获得10
14秒前
14秒前
我是老大应助xmy采纳,获得10
15秒前
让我瞅瞅发布了新的文献求助10
15秒前
16秒前
17秒前
干净的烧鹅完成签到,获得积分10
17秒前
科研通AI2S应助tdtk采纳,获得10
18秒前
大个应助乂贰ZERO叁采纳,获得10
20秒前
20秒前
22秒前
liuwenwen完成签到,获得积分10
22秒前
23秒前
科目三应助派大星采纳,获得30
25秒前
26秒前
可爱的函函应助Rita采纳,获得10
26秒前
26秒前
27秒前
yangcong发布了新的文献求助10
27秒前
yydragen应助学术渣渣采纳,获得30
32秒前
Muhammad发布了新的文献求助10
33秒前
yatou327完成签到,获得积分10
33秒前
35秒前
miao发布了新的文献求助10
35秒前
苏苏发布了新的文献求助10
36秒前
汉堡包应助学术混子采纳,获得10
38秒前
shimly0101xx发布了新的文献求助10
40秒前
阿珊完成签到,获得积分10
41秒前
Ki_Ayasato发布了新的文献求助150
42秒前
大模型应助北夏采纳,获得10
43秒前
cuber完成签到 ,获得积分10
44秒前
44秒前
XXJ发布了新的文献求助10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176