Combining Machine Learning and Molecular Simulations to Unlock Gas Separation Potentials of MOF Membranes and MOF/Polymer MMMs

气体分离 材料科学 聚合物 分子动力学 金属有机骨架 气体扩散 扩散 吸附 蒙特卡罗方法 化学工程 纳米技术 化学 热力学 有机化学 计算化学 物理 燃料电池 复合材料 工程类 统计 生物化学 数学
作者
Hilal Daglar,Seda Keskın
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (28): 32134-32148 被引量:53
标识
DOI:10.1021/acsami.2c08977
摘要

Due to the enormous increase in the number of metal-organic frameworks (MOFs), combining molecular simulations with machine learning (ML) would be a very useful approach for the accurate and rapid assessment of the separation performances of thousands of materials. In this work, we combined these two powerful approaches, molecular simulations and ML, to evaluate MOF membranes and MOF/polymer mixed matrix membranes (MMMs) for six different gas separations: He/H2, He/N2, He/CH4, H2/N2, H2/CH4, and N2/CH4. Single-component gas uptakes and diffusivities were computed by grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations, respectively, and these simulation results were used to assess gas permeabilities and selectivities of MOF membranes. Physical, chemical, and energetic features of MOFs were used as descriptors, and eight different ML models were developed to predict gas adsorption and diffusion properties of MOFs. Gas permeabilities and membrane selectivities of 5249 MOFs and 31,494 MOF/polymer MMMs were predicted using these ML models. To examine the transferability of the ML models, we also focused on computer-generated, hypothetical MOFs (hMOFs) and predicted the gas permeability and selectivity of 1000 hMOF/polymer MMMs. The ML models that we developed accurately predict the uptake and diffusion properties of He, H2, N2, and CH4 gases in MOFs and will significantly accelerate the assessment of separation performances of MOF membranes and MOF/polymer MMMs. These models will also be useful to direct the extensive experimental efforts and computationally demanding molecular simulations to the fabrication and analysis of membrane materials offering high performance for a target gas separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实滑板完成签到,获得积分20
1秒前
2秒前
2秒前
徐生发布了新的文献求助10
2秒前
人生何处不青山完成签到 ,获得积分10
3秒前
无有完成签到,获得积分10
3秒前
暗炎发布了新的文献求助10
3秒前
3秒前
chemist229完成签到 ,获得积分10
4秒前
4秒前
wwz应助咚咚采纳,获得10
5秒前
小二郎应助ze采纳,获得10
5秒前
芭乐完成签到,获得积分10
6秒前
赘婿应助I_won_t采纳,获得10
6秒前
li完成签到,获得积分10
7秒前
生动的凡发布了新的文献求助10
7秒前
英姑应助5165asd采纳,获得10
8秒前
chriselva发布了新的文献求助10
9秒前
9秒前
bkagyin应助美满的天薇采纳,获得10
11秒前
11秒前
科研通AI2S应助kkjay采纳,获得20
11秒前
研友_VZG7GZ应助Dodobirdzhb采纳,获得10
11秒前
Ava应助月牙湾采纳,获得20
12秒前
Liu完成签到 ,获得积分10
12秒前
12秒前
月亮完成签到,获得积分10
12秒前
pop完成签到,获得积分10
13秒前
1751587229完成签到,获得积分10
13秒前
早起完成签到,获得积分10
14秒前
xxxxxb发布了新的文献求助10
15秒前
15秒前
Owen应助宇文青寒采纳,获得10
16秒前
16秒前
16秒前
17秒前
燕知南发布了新的文献求助10
17秒前
夜之枫完成签到,获得积分10
17秒前
彭于晏应助壮观千筹采纳,获得10
17秒前
可爱的函函应助甜甜圈采纳,获得10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156292
求助须知:如何正确求助?哪些是违规求助? 2807762
关于积分的说明 7874438
捐赠科研通 2465982
什么是DOI,文献DOI怎么找? 1312538
科研通“疑难数据库(出版商)”最低求助积分说明 630166
版权声明 601912