Asthma has been the most prevalent chronic respiratory disease (Mensah et al. J Allergy Clin Immunol 142:744–748, 2018). To explore pathogenic mechanism or new treatments of asthma, mice have been utilized to model the disease. Eosinophilic airway inflammation, allergen specific-IgE, and airway hyperresponsiveness have been characteristic features of allergic asthma (Drake et al. Pulm Ther 5:103–115, 2019). In mouse models, airway hyperresponsiveness to inhaled broncho-constrictor agents such as methacholine chloride (MCh) has been a key disease marker (Alessandrini et al. Front Immunol 11:575936, 2020). A variety of systems to assess airway reactivity in mice are currently available. Here, three distinct systems are described as these have been used in many publications. In the first system, an invasive system in which mice are anesthetized and intubated followed by mechanical ventilation, lung resistance (R), dynamic compliance (C), and other respiratory parameters with MCh challenge are measured. In the second system, a noninvasive system equipped with a chamber in which mice can move freely and spontaneously breathe, changes in airways with MCh challenge are measured as enhanced pause (Penh) values. In the third system, in vitro airway smooth muscle (ASM) reactivity is monitored in an extracted mouse tracheal duct with a cholinergic agonist challenge or electrical stimulation. Each of these systems has unique features, benefits, or disadvantages.