A Blind Deconvolution Approach Based on Spectral Harmonics-to-Noise Ratio for Rotating Machinery Condition Monitoring

循环平稳过程 状态监测 工程类 谐波 断层(地质) 控制理论(社会学) 噪音(视频) 故障检测与隔离 电子工程 反褶积 计算机科学 算法 人工智能 电信 频道(广播) 电气工程 控制(管理) 电压 地震学 图像(数学) 执行机构 地质学
作者
Qiuyang Zhou,Cai Yi,Lei Yan,Chenguang Huang,Jianhui Lin
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1092-1107 被引量:18
标识
DOI:10.1109/tase.2022.3179457
摘要

Harmonics-to-noise ratio (HNR) is an important health index of rotating machine, which has been applied in blind deconvolution (BD) method to realize periodic impulse detection. However, most fault impulses are not strictly periodic, but pseudo-cyclostationary, which will affect the performance of HNR in fault characterization to some extent. This limits its applications. Therefore, in this paper, a novel BD method, maximum squared envelope spectrum harmonic-to-interference ratio deconvolution (MSESHIRD), is proposed to more effectively achieve fault identification. The proposed method seeks a target filter by maximizing squared envelope spectrum harmonic-to-interference ratio (SESHIR). Since harmonic components corresponding to repetitive fault impulses in SES are less sensitive to random fluctuations, SESHIR can more accurately distinguish repetitive fault impulses from irrelevant interference in vibration signals. Therefore, BD based on SESHIR has better performance than BD based on HNR in measuring fault features in signals. Through simulation and experimental case analysis, the proposed method is compared with several public methods Results show that the proposed method has better performance in fault characteristic extraction. In addition, it is implemented on bearing run-to-failure data for condition monitoring to show that the proposed method has excellent ability of early fault detection. Note to Practitioners—This paper is motivated by the problems of automatic operating condition monitoring and early defect diagnosis of rotating machines. These problems can be effectively solved by designing a BD method based on reliable and efficient health indices. HNR defined on autocorrelation function (AF) is an excellent health index to characterize the signal-to-noise ratio (SNR) of repetitive fault impulse in signals. However, this paper uses mathematical models of HNR to show that it has very strict requirements on the period and SNR of fault impulse signals. A fluctuating fault period or a low SNR might make HNR unable to accurately estimate the energy of fault components in signals, thus weakening its performance in fault characterization. Compared with HNR, SESHIR has better fault characterization ability due to that SES can more accurately obtain the periodicity (frequency) and energy of fault components in signals. Therefore, this paper proposes a novel BD method based on SESHIR maximization for repetitive impulse monitoring. Its effectiveness and robustness are verified by both theoretical justification and experimental results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Li发布了新的文献求助10
1秒前
明明发布了新的文献求助10
1秒前
桐桐应助Alan采纳,获得10
1秒前
何浏亮发布了新的文献求助10
2秒前
2秒前
主流二完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
sugar完成签到,获得积分10
4秒前
7秒前
nicolight发布了新的文献求助10
9秒前
火山书痴发布了新的文献求助30
10秒前
Akim应助miqilin采纳,获得10
10秒前
11秒前
哇哈哈发布了新的文献求助10
13秒前
Mark_Y完成签到 ,获得积分10
14秒前
14秒前
华仔应助茶茶同学采纳,获得10
14秒前
14秒前
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
隐形曼青应助away采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
18秒前
19秒前
liyifengli完成签到,获得积分10
19秒前
大个应助cherry采纳,获得10
20秒前
22秒前
林大侠发布了新的文献求助10
23秒前
tao完成签到 ,获得积分10
23秒前
萌only发布了新的文献求助50
23秒前
哇哈哈完成签到,获得积分20
24秒前
郭佳怡发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771499
求助须知:如何正确求助?哪些是违规求助? 5591993
关于积分的说明 15427668
捐赠科研通 4904815
什么是DOI,文献DOI怎么找? 2639018
邀请新用户注册赠送积分活动 1586798
关于科研通互助平台的介绍 1541797