A Blind Deconvolution Approach Based on Spectral Harmonics-to-Noise Ratio for Rotating Machinery Condition Monitoring

循环平稳过程 状态监测 工程类 谐波 断层(地质) 控制理论(社会学) 噪音(视频) 故障检测与隔离 电子工程 反褶积 计算机科学 算法 人工智能 电信 频道(广播) 电气工程 控制(管理) 电压 地震学 图像(数学) 执行机构 地质学
作者
Qiuyang Zhou,Cai Yi,Lei Yan,Chenguang Huang,Jianhui Lin
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1092-1107 被引量:18
标识
DOI:10.1109/tase.2022.3179457
摘要

Harmonics-to-noise ratio (HNR) is an important health index of rotating machine, which has been applied in blind deconvolution (BD) method to realize periodic impulse detection. However, most fault impulses are not strictly periodic, but pseudo-cyclostationary, which will affect the performance of HNR in fault characterization to some extent. This limits its applications. Therefore, in this paper, a novel BD method, maximum squared envelope spectrum harmonic-to-interference ratio deconvolution (MSESHIRD), is proposed to more effectively achieve fault identification. The proposed method seeks a target filter by maximizing squared envelope spectrum harmonic-to-interference ratio (SESHIR). Since harmonic components corresponding to repetitive fault impulses in SES are less sensitive to random fluctuations, SESHIR can more accurately distinguish repetitive fault impulses from irrelevant interference in vibration signals. Therefore, BD based on SESHIR has better performance than BD based on HNR in measuring fault features in signals. Through simulation and experimental case analysis, the proposed method is compared with several public methods Results show that the proposed method has better performance in fault characteristic extraction. In addition, it is implemented on bearing run-to-failure data for condition monitoring to show that the proposed method has excellent ability of early fault detection. Note to Practitioners—This paper is motivated by the problems of automatic operating condition monitoring and early defect diagnosis of rotating machines. These problems can be effectively solved by designing a BD method based on reliable and efficient health indices. HNR defined on autocorrelation function (AF) is an excellent health index to characterize the signal-to-noise ratio (SNR) of repetitive fault impulse in signals. However, this paper uses mathematical models of HNR to show that it has very strict requirements on the period and SNR of fault impulse signals. A fluctuating fault period or a low SNR might make HNR unable to accurately estimate the energy of fault components in signals, thus weakening its performance in fault characterization. Compared with HNR, SESHIR has better fault characterization ability due to that SES can more accurately obtain the periodicity (frequency) and energy of fault components in signals. Therefore, this paper proposes a novel BD method based on SESHIR maximization for repetitive impulse monitoring. Its effectiveness and robustness are verified by both theoretical justification and experimental results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮生完成签到 ,获得积分10
刚刚
奔跑的青霉素完成签到 ,获得积分10
刚刚
linxue发布了新的文献求助10
刚刚
科研通AI5应助Annie采纳,获得10
刚刚
1秒前
执着发布了新的文献求助20
1秒前
原鑫完成签到,获得积分10
1秒前
寒涛先生完成签到,获得积分20
2秒前
3秒前
科研通AI5应助呆萌的元枫采纳,获得30
3秒前
3秒前
gzsy发布了新的文献求助10
3秒前
5秒前
7秒前
7秒前
哄不好的南完成签到,获得积分10
7秒前
makus完成签到,获得积分10
7秒前
西西歪完成签到,获得积分10
9秒前
9秒前
深情安青应助BONBON采纳,获得10
9秒前
小马完成签到,获得积分10
10秒前
10秒前
细腻沅发布了新的文献求助10
12秒前
火羽白然完成签到 ,获得积分10
12秒前
冰西瓜完成签到 ,获得积分10
13秒前
季忆发布了新的文献求助10
13秒前
13秒前
cc发布了新的文献求助10
14秒前
Hello应助糊涂的小伙采纳,获得10
14秒前
甜甜的冷霜完成签到,获得积分10
14秒前
hkxfg发布了新的文献求助10
15秒前
谭谨川完成签到,获得积分10
15秒前
李爱国应助云中渊采纳,获得10
16秒前
16秒前
LT发布了新的文献求助10
17秒前
17秒前
高兴藏花发布了新的文献求助10
17秒前
19秒前
Allen完成签到,获得积分10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808