亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent framework for automated failure prediction, detection, and classification of mission critical autonomous flights

方向舵 自动驾驶仪 计算机科学 副翼 故障检测与隔离 异常检测 人工神经网络 执行机构 人工智能 实时计算 工程类 控制工程 航空航天工程 海洋工程
作者
Muhammad Shakil Ahmad,M. Usman Akram,Robiah Ahmad,Khurram Hameed,Ali Hassan
出处
期刊:Isa Transactions [Elsevier]
卷期号:129: 355-371 被引量:8
标识
DOI:10.1016/j.isatra.2022.01.014
摘要

Autonomous flights are the major industry contributors towards next-generation developments in pervasive and ubiquitous computing. Modern aerial vehicles are designed to receive actuator commands from the primary autopilot software as input to regulate their servos for adjusting control surfaces. Due to real-time interaction with the actual physical environment, there exists a high risk of control surface failures for engine, rudder, elevators, and ailerons etc. If not anticipated and then timely controlled, failures occurring during the flight can have severe and cataclysmic consequences, which may result in mid-air collision or ultimate crash. Humongous amount of sensory data being generated throughout mission-critical flights, makes it an ideal candidate for applying advanced data-driven machine learning techniques to identify intelligent insights related to failures for instant recovery from emergencies. In this paper, we present a novel framework based on machine learning techniques for failure prediction, detection, and classification for autonomous aerial vehicles. The proposed framework utilizes long short-term memory recurrent neural network architecture to analyze time series data and has been applied at the AirLab Failure and Anomaly flight dataset, which is a comprehensive publicly available dataset of various fault types in fixed-wing autonomous aerial vehicles' control surfaces. The proposed framework is able to predict failure with an average accuracy of 93% and the average time-to-predict a failure is 19 s before the actual occurrence of the failure, which is 10 s better than current state-of-the-art. Failure detection accuracy is 100% and average detection time is 0.74 s after happening of failure, which is 1.28 s better than current state-of-the-art. Failure classification accuracy of proposed framework is 100%. The performance analysis shows the strength of the proposed methodology to be used as a real-time failure prediction and a pseudo-real-time failure detection along with a failure classification framework for eventual deployment with actual mission-critical autonomous flights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JZ完成签到,获得积分10
9秒前
JZ发布了新的文献求助10
14秒前
24秒前
Owen应助陈媛采纳,获得10
1分钟前
章鱼完成签到,获得积分10
1分钟前
3分钟前
陈媛发布了新的文献求助10
3分钟前
kuoping完成签到,获得积分10
4分钟前
5分钟前
PD完成签到,获得积分10
6分钟前
6分钟前
6分钟前
义气的书雁完成签到,获得积分10
7分钟前
7分钟前
andrele发布了新的文献求助10
8分钟前
谦也静熵完成签到,获得积分10
9分钟前
通科研完成签到 ,获得积分10
9分钟前
11分钟前
andrele发布了新的文献求助10
11分钟前
陈媛发布了新的文献求助10
11分钟前
sasa发布了新的文献求助10
11分钟前
sasa完成签到,获得积分10
11分钟前
满地枫叶完成签到,获得积分20
12分钟前
joanna完成签到,获得积分10
12分钟前
满地枫叶发布了新的文献求助10
12分钟前
13分钟前
M先生完成签到,获得积分10
13分钟前
13分钟前
13分钟前
tlx发布了新的文献求助10
13分钟前
13分钟前
14分钟前
14分钟前
14分钟前
14分钟前
小圆圈发布了新的文献求助30
14分钟前
兴奋的宛亦完成签到,获得积分20
15分钟前
zhanglongfei发布了新的文献求助10
15分钟前
15分钟前
小圆圈发布了新的文献求助10
15分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846050
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628696
版权声明 601757