清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Intelligent framework for automated failure prediction, detection, and classification of mission critical autonomous flights

方向舵 自动驾驶仪 计算机科学 副翼 故障检测与隔离 异常检测 人工神经网络 执行机构 人工智能 实时计算 工程类 控制工程 航空航天工程 海洋工程
作者
Muhammad Shakil Ahmad,M. Usman Akram,Robiah Ahmad,Khurram Hameed,Ali Hassan
出处
期刊:Isa Transactions [Elsevier]
卷期号:129: 355-371 被引量:8
标识
DOI:10.1016/j.isatra.2022.01.014
摘要

Autonomous flights are the major industry contributors towards next-generation developments in pervasive and ubiquitous computing. Modern aerial vehicles are designed to receive actuator commands from the primary autopilot software as input to regulate their servos for adjusting control surfaces. Due to real-time interaction with the actual physical environment, there exists a high risk of control surface failures for engine, rudder, elevators, and ailerons etc. If not anticipated and then timely controlled, failures occurring during the flight can have severe and cataclysmic consequences, which may result in mid-air collision or ultimate crash. Humongous amount of sensory data being generated throughout mission-critical flights, makes it an ideal candidate for applying advanced data-driven machine learning techniques to identify intelligent insights related to failures for instant recovery from emergencies. In this paper, we present a novel framework based on machine learning techniques for failure prediction, detection, and classification for autonomous aerial vehicles. The proposed framework utilizes long short-term memory recurrent neural network architecture to analyze time series data and has been applied at the AirLab Failure and Anomaly flight dataset, which is a comprehensive publicly available dataset of various fault types in fixed-wing autonomous aerial vehicles' control surfaces. The proposed framework is able to predict failure with an average accuracy of 93% and the average time-to-predict a failure is 19 s before the actual occurrence of the failure, which is 10 s better than current state-of-the-art. Failure detection accuracy is 100% and average detection time is 0.74 s after happening of failure, which is 1.28 s better than current state-of-the-art. Failure classification accuracy of proposed framework is 100%. The performance analysis shows the strength of the proposed methodology to be used as a real-time failure prediction and a pseudo-real-time failure detection along with a failure classification framework for eventual deployment with actual mission-critical autonomous flights.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yvonne发布了新的文献求助10
15秒前
传奇3应助Yvonne采纳,获得10
30秒前
Yvonne完成签到,获得积分10
35秒前
宁羽发布了新的文献求助10
43秒前
zct完成签到,获得积分10
1分钟前
zh完成签到,获得积分10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
1分钟前
尤里有气发布了新的文献求助10
1分钟前
1分钟前
叶千山完成签到 ,获得积分10
1分钟前
Yvonne发布了新的文献求助10
1分钟前
华仔应助Yvonne采纳,获得10
1分钟前
晨曦完成签到 ,获得积分10
1分钟前
kean1943完成签到,获得积分10
2分钟前
2分钟前
尤里有气发布了新的文献求助10
2分钟前
orixero应助宁羽采纳,获得10
2分钟前
2分钟前
宁羽1完成签到,获得积分10
2分钟前
活泼雪碧发布了新的文献求助10
2分钟前
2分钟前
宁羽完成签到,获得积分10
2分钟前
Yvonne发布了新的文献求助10
2分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
3分钟前
尤里有气发布了新的文献求助10
3分钟前
RC发布了新的文献求助10
3分钟前
tt完成签到,获得积分10
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
5分钟前
MTF完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
赘婿应助moonsea0415采纳,获得10
6分钟前
任性的紫翠完成签到,获得积分10
6分钟前
活泼雪碧完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633472
什么是DOI,文献DOI怎么找? 2532825
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723