Intelligent framework for automated failure prediction, detection, and classification of mission critical autonomous flights

方向舵 自动驾驶仪 计算机科学 副翼 故障检测与隔离 异常检测 人工神经网络 执行机构 人工智能 实时计算 工程类 控制工程 航空航天工程 海洋工程
作者
Muhammad Shakil Ahmad,M. Usman Akram,Robiah Ahmad,Khurram Hameed,Ali Hassan
出处
期刊:Isa Transactions [Elsevier]
卷期号:129: 355-371 被引量:8
标识
DOI:10.1016/j.isatra.2022.01.014
摘要

Autonomous flights are the major industry contributors towards next-generation developments in pervasive and ubiquitous computing. Modern aerial vehicles are designed to receive actuator commands from the primary autopilot software as input to regulate their servos for adjusting control surfaces. Due to real-time interaction with the actual physical environment, there exists a high risk of control surface failures for engine, rudder, elevators, and ailerons etc. If not anticipated and then timely controlled, failures occurring during the flight can have severe and cataclysmic consequences, which may result in mid-air collision or ultimate crash. Humongous amount of sensory data being generated throughout mission-critical flights, makes it an ideal candidate for applying advanced data-driven machine learning techniques to identify intelligent insights related to failures for instant recovery from emergencies. In this paper, we present a novel framework based on machine learning techniques for failure prediction, detection, and classification for autonomous aerial vehicles. The proposed framework utilizes long short-term memory recurrent neural network architecture to analyze time series data and has been applied at the AirLab Failure and Anomaly flight dataset, which is a comprehensive publicly available dataset of various fault types in fixed-wing autonomous aerial vehicles' control surfaces. The proposed framework is able to predict failure with an average accuracy of 93% and the average time-to-predict a failure is 19 s before the actual occurrence of the failure, which is 10 s better than current state-of-the-art. Failure detection accuracy is 100% and average detection time is 0.74 s after happening of failure, which is 1.28 s better than current state-of-the-art. Failure classification accuracy of proposed framework is 100%. The performance analysis shows the strength of the proposed methodology to be used as a real-time failure prediction and a pseudo-real-time failure detection along with a failure classification framework for eventual deployment with actual mission-critical autonomous flights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含蓄冬瓜完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
哭泣朝雪完成签到 ,获得积分10
3秒前
Ava应助海聪天宇采纳,获得10
5秒前
5秒前
研友_08oR4Z发布了新的文献求助10
6秒前
JJJ发布了新的文献求助10
6秒前
6秒前
7秒前
9秒前
zz发布了新的文献求助10
9秒前
我是老大应助liquor采纳,获得10
10秒前
英姑应助罗显发采纳,获得10
10秒前
10秒前
10秒前
10秒前
香蕉觅云应助沙海冬采纳,获得10
11秒前
11秒前
11秒前
可爱的函函应助麻瓜采纳,获得10
11秒前
英勇的寒蕾完成签到,获得积分10
12秒前
远志发布了新的文献求助30
12秒前
去银行整点金条完成签到 ,获得积分10
12秒前
14秒前
沙耶酱完成签到 ,获得积分10
14秒前
浮游应助虚幻的白凝采纳,获得10
15秒前
15秒前
平淡的芷蕊完成签到,获得积分10
15秒前
东东发布了新的文献求助10
16秒前
GG爆发布了新的文献求助10
17秒前
17秒前
cyndi发布了新的文献求助10
18秒前
英俊的铭应助zz采纳,获得10
18秒前
乐乐应助靓丽孤容采纳,获得10
19秒前
典雅的土豆完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474332
求助须知:如何正确求助?哪些是违规求助? 4576108
关于积分的说明 14356558
捐赠科研通 4503983
什么是DOI,文献DOI怎么找? 2467875
邀请新用户注册赠送积分活动 1455626
关于科研通互助平台的介绍 1429632