Intelligent framework for automated failure prediction, detection, and classification of mission critical autonomous flights

方向舵 自动驾驶仪 计算机科学 副翼 故障检测与隔离 异常检测 人工神经网络 执行机构 人工智能 实时计算 工程类 控制工程 航空航天工程 海洋工程
作者
Muhammad Shakil Ahmad,M. Usman Akram,Robiah Ahmad,Khurram Hameed,Ali Hassan
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:129: 355-371 被引量:8
标识
DOI:10.1016/j.isatra.2022.01.014
摘要

Autonomous flights are the major industry contributors towards next-generation developments in pervasive and ubiquitous computing. Modern aerial vehicles are designed to receive actuator commands from the primary autopilot software as input to regulate their servos for adjusting control surfaces. Due to real-time interaction with the actual physical environment, there exists a high risk of control surface failures for engine, rudder, elevators, and ailerons etc. If not anticipated and then timely controlled, failures occurring during the flight can have severe and cataclysmic consequences, which may result in mid-air collision or ultimate crash. Humongous amount of sensory data being generated throughout mission-critical flights, makes it an ideal candidate for applying advanced data-driven machine learning techniques to identify intelligent insights related to failures for instant recovery from emergencies. In this paper, we present a novel framework based on machine learning techniques for failure prediction, detection, and classification for autonomous aerial vehicles. The proposed framework utilizes long short-term memory recurrent neural network architecture to analyze time series data and has been applied at the AirLab Failure and Anomaly flight dataset, which is a comprehensive publicly available dataset of various fault types in fixed-wing autonomous aerial vehicles' control surfaces. The proposed framework is able to predict failure with an average accuracy of 93% and the average time-to-predict a failure is 19 s before the actual occurrence of the failure, which is 10 s better than current state-of-the-art. Failure detection accuracy is 100% and average detection time is 0.74 s after happening of failure, which is 1.28 s better than current state-of-the-art. Failure classification accuracy of proposed framework is 100%. The performance analysis shows the strength of the proposed methodology to be used as a real-time failure prediction and a pseudo-real-time failure detection along with a failure classification framework for eventual deployment with actual mission-critical autonomous flights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助GZ了呀采纳,获得10
1秒前
1秒前
领导范儿应助科研小白鼠采纳,获得30
3秒前
Singularity应助阿敬采纳,获得10
3秒前
混子发布了新的文献求助10
4秒前
000000完成签到,获得积分10
5秒前
5秒前
jj发布了新的文献求助10
9秒前
眼睛大雨筠应助YJL采纳,获得20
10秒前
10秒前
NexusExplorer应助冷酷的丁丁采纳,获得10
11秒前
11秒前
王志松完成签到,获得积分10
12秒前
雨相所至发布了新的文献求助10
15秒前
Dada应助阿敬采纳,获得30
15秒前
洺全发布了新的文献求助10
15秒前
16秒前
16秒前
ccccccp完成签到,获得积分10
18秒前
小帅给小帅的求助进行了留言
18秒前
乐乱完成签到 ,获得积分10
18秒前
18秒前
海边的卡夫卡完成签到,获得积分10
19秒前
勤劳冰枫发布了新的文献求助10
19秒前
20秒前
思源应助gao采纳,获得10
21秒前
封迎松完成签到 ,获得积分10
21秒前
21秒前
22秒前
阿猫发布了新的文献求助10
23秒前
徐赞美发布了新的文献求助10
24秒前
24秒前
如意一斩完成签到,获得积分10
26秒前
星辰大海应助halona采纳,获得10
26秒前
张凯茜完成签到,获得积分20
26秒前
向日葵完成签到,获得积分10
27秒前
张铁柱完成签到,获得积分10
28秒前
28秒前
阿猫完成签到,获得积分20
29秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958212
求助须知:如何正确求助?哪些是违规求助? 3504372
关于积分的说明 11118239
捐赠科研通 3235651
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565