雷亚克夫
热解
动力学
大气温度范围
化学动力学
分子动力学
活化能
化学反应
材料科学
工作(物理)
化学气相沉积
分子
化学
化学物理
物理化学
热力学
化学工程
计算化学
纳米技术
有机化学
物理
工程类
量子力学
原子间势
作者
Yanping Li,Dazhou Yan,Tao Yang,Guosheng Wen,Xin Yao
出处
期刊:ACS omega
[American Chemical Society]
日期:2022-01-28
卷期号:7 (5): 3900-3916
标识
DOI:10.1021/acsomega.1c03998
摘要
The pyrolysis kinetics of SiHCl3 and its reaction mechanism are essential for the chemical vapor deposition process in polysilicon industries. However, due to the high temperature and lack of in situ experimental detection technology, it is difficult to carry out experimental research on the pyrolysis kinetics of SiHCl3. In this work, reactive force field molecular dynamics simulations of SiHCl3 pyrolysis were performed to investigate the effect of temperature on the pyrolysis kinetics of SiHCl3 at the atomistic scale in a wide temperature range (1000-2000 K). The lumped Si clusters containing more than five Si atoms tended to appear at the later period of the reaction under a temperature lower than 1300 K, some of which even possessed polycyclic structures; nevertheless, small ones with less than two Si atoms such as SiHCl2 and HCl tended to emerge under a high temperature. The changes of partial energy terms with time evolution under various temperatures were proved to be rooted in the distribution of intermediates based on the momentary simulation period. In general, the reaction network at a low temperature was more complicated than that at a high temperature, resulting from the fact that more chemical events and intermediates came into existence, and the maximum number of Si atoms in one single molecule/radical was observed under a low temperature than that under a high temperature. As to the variation of SiHCl3 with the progress of the reaction, the linear fitting tendency disappeared under the temperature above 1300 K, which changed in fluctuation with the further elevation of temperature, elucidating the fact that SiHCl3 can act as a product and not just as a reactant to participate in elementary chemical events frequently.
科研通智能强力驱动
Strongly Powered by AbleSci AI