Interpretability application of the Just-in-Time software defect prediction model

可解释性 计算机科学 软件错误 预测建模 数据挖掘 软件 集合(抽象数据类型) 机器学习 编码(集合论) 粒度 人工智能 可靠性工程 工程类 操作系统 程序设计语言
作者
Wei Zheng,Tianren Shen,Xiang Chen,Peiran Deng
出处
期刊:Journal of Systems and Software [Elsevier BV]
卷期号:188: 111245-111245 被引量:63
标识
DOI:10.1016/j.jss.2022.111245
摘要

Software defect prediction is one of the most active fields in software engineering. Recently, some experts have proposed the Just-in-time Defect Prediction Technology. Just-in-time Defect prediction technology has become a hot topic in defect prediction due to its directness and fine granularity. This technique can predict whether a software defect exists in every code change submitted by a developer. In addition, the method has the advantages of high speed and easy tracking. However, the biggest challenge is that the prediction accuracy of Just-in-Time software is affected by the data set category imbalance. In most cases, 20% of defects in software engineering may be in 80% of modules, and code changes that do not cause defects account for a large proportion. Therefore, there is an imbalance in the data set, that is, the imbalance between a few classes and a majority of classes, which will affect the classification prediction effect of the model. Furthermore, because most features do not result in code changes that cause defects, it is not easy to achieve the desired results in practice even though the model is highly predictive. In addition, the features of the data set contain many irrelevant features and redundant features, which are invalid data, which will increase the complexity of the prediction model and reduce the prediction efficiency. To improve the prediction efficiency of Just-in-Time defect prediction technology. We trained a just-in-time defect prediction model using six open source projects from different fields based on random forest classification. LIME Interpretability technique is used to explain the model to a certain extent. By using explicable methods to extract meaningful, relevant features, the experiment can only need 45% of the original work to explain the prediction results of the prediction model and identify critical features through explicable techniques, and only need 96% of the original work to achieve this goal, under the premise of ensuring specific prediction effects. Therefore, the application of interpretable techniques can significantly reduce the workload of developers and improve work efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助喵2采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
YYYYYY完成签到,获得积分10
2秒前
不会取名字完成签到,获得积分10
2秒前
小蘑菇应助刘果采纳,获得10
2秒前
祥哥有文化完成签到,获得积分10
2秒前
人机一号完成签到,获得积分10
2秒前
3秒前
3秒前
斯文败类应助尧九采纳,获得10
3秒前
jinx123456完成签到,获得积分10
3秒前
李大头完成签到,获得积分10
3秒前
3秒前
谦让向南完成签到,获得积分10
4秒前
Mifabric发布了新的文献求助20
4秒前
WWW发布了新的文献求助10
4秒前
清爽的芹菜完成签到,获得积分10
4秒前
4秒前
Anne完成签到,获得积分10
5秒前
5秒前
5秒前
hui完成签到,获得积分20
5秒前
Arthur完成签到 ,获得积分10
5秒前
Songa完成签到,获得积分20
5秒前
5秒前
挽风走发布了新的文献求助10
6秒前
6秒前
整齐芷文完成签到,获得积分10
6秒前
认真雅阳完成签到,获得积分10
7秒前
曾经的贞完成签到,获得积分10
7秒前
陈丽媛发布了新的文献求助10
7秒前
12432发布了新的文献求助10
7秒前
8秒前
YKH完成签到,获得积分10
8秒前
兴奋的定帮应助ddddddd采纳,获得10
9秒前
liusichong发布了新的文献求助10
9秒前
曾经的贞发布了新的文献求助10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009325
求助须知:如何正确求助?哪些是违规求助? 3549162
关于积分的说明 11301105
捐赠科研通 3283572
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886205
科研通“疑难数据库(出版商)”最低求助积分说明 811301