Interpretability application of the Just-in-Time software defect prediction model

可解释性 计算机科学 软件错误 预测建模 数据挖掘 软件 集合(抽象数据类型) 机器学习 编码(集合论) 粒度 人工智能 可靠性工程 工程类 操作系统 程序设计语言
作者
Wei Zheng,Tianren Shen,Xiang Chen,Peiran Deng
出处
期刊:Journal of Systems and Software [Elsevier]
卷期号:188: 111245-111245 被引量:60
标识
DOI:10.1016/j.jss.2022.111245
摘要

Software defect prediction is one of the most active fields in software engineering. Recently, some experts have proposed the Just-in-time Defect Prediction Technology. Just-in-time Defect prediction technology has become a hot topic in defect prediction due to its directness and fine granularity. This technique can predict whether a software defect exists in every code change submitted by a developer. In addition, the method has the advantages of high speed and easy tracking. However, the biggest challenge is that the prediction accuracy of Just-in-Time software is affected by the data set category imbalance. In most cases, 20% of defects in software engineering may be in 80% of modules, and code changes that do not cause defects account for a large proportion. Therefore, there is an imbalance in the data set, that is, the imbalance between a few classes and a majority of classes, which will affect the classification prediction effect of the model. Furthermore, because most features do not result in code changes that cause defects, it is not easy to achieve the desired results in practice even though the model is highly predictive. In addition, the features of the data set contain many irrelevant features and redundant features, which are invalid data, which will increase the complexity of the prediction model and reduce the prediction efficiency. To improve the prediction efficiency of Just-in-Time defect prediction technology. We trained a just-in-time defect prediction model using six open source projects from different fields based on random forest classification. LIME Interpretability technique is used to explain the model to a certain extent. By using explicable methods to extract meaningful, relevant features, the experiment can only need 45% of the original work to explain the prediction results of the prediction model and identify critical features through explicable techniques, and only need 96% of the original work to achieve this goal, under the premise of ensuring specific prediction effects. Therefore, the application of interpretable techniques can significantly reduce the workload of developers and improve work efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sun完成签到,获得积分10
刚刚
刚刚
qiu完成签到,获得积分10
2秒前
Fonxi发布了新的文献求助10
2秒前
夏来发布了新的文献求助10
3秒前
江浪浪应助房弼采纳,获得10
3秒前
合适太清完成签到,获得积分10
4秒前
略略略发布了新的文献求助10
5秒前
追寻的惜芹完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
研友_xLOMQZ完成签到,获得积分10
7秒前
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得30
8秒前
CWNU_HAN应助科研通管家采纳,获得30
8秒前
8秒前
orixero应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
领导范儿应助笙默0329采纳,获得10
9秒前
9秒前
xiaoming应助科研通管家采纳,获得30
9秒前
李健应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
9秒前
可爱的函函应助缓慢新梅采纳,获得10
9秒前
hli应助科研通管家采纳,获得10
9秒前
万能图书馆应助大人采纳,获得10
9秒前
LT发布了新的文献求助10
9秒前
9秒前
Ava应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
乌衣白马发布了新的文献求助10
10秒前
所所应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得30
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135818
求助须知:如何正确求助?哪些是违规求助? 2786651
关于积分的说明 7778773
捐赠科研通 2442821
什么是DOI,文献DOI怎么找? 1298711
科研通“疑难数据库(出版商)”最低求助积分说明 625212
版权声明 600866