Interpretability application of the Just-in-Time software defect prediction model

可解释性 计算机科学 软件错误 预测建模 数据挖掘 软件 集合(抽象数据类型) 机器学习 编码(集合论) 粒度 人工智能 可靠性工程 工程类 操作系统 程序设计语言
作者
Wei Zheng,Tianren Shen,Xiang Chen,Peiran Deng
出处
期刊:Journal of Systems and Software [Elsevier]
卷期号:188: 111245-111245 被引量:90
标识
DOI:10.1016/j.jss.2022.111245
摘要

Software defect prediction is one of the most active fields in software engineering. Recently, some experts have proposed the Just-in-time Defect Prediction Technology. Just-in-time Defect prediction technology has become a hot topic in defect prediction due to its directness and fine granularity. This technique can predict whether a software defect exists in every code change submitted by a developer. In addition, the method has the advantages of high speed and easy tracking. However, the biggest challenge is that the prediction accuracy of Just-in-Time software is affected by the data set category imbalance. In most cases, 20% of defects in software engineering may be in 80% of modules, and code changes that do not cause defects account for a large proportion. Therefore, there is an imbalance in the data set, that is, the imbalance between a few classes and a majority of classes, which will affect the classification prediction effect of the model. Furthermore, because most features do not result in code changes that cause defects, it is not easy to achieve the desired results in practice even though the model is highly predictive. In addition, the features of the data set contain many irrelevant features and redundant features, which are invalid data, which will increase the complexity of the prediction model and reduce the prediction efficiency. To improve the prediction efficiency of Just-in-Time defect prediction technology. We trained a just-in-time defect prediction model using six open source projects from different fields based on random forest classification. LIME Interpretability technique is used to explain the model to a certain extent. By using explicable methods to extract meaningful, relevant features, the experiment can only need 45% of the original work to explain the prediction results of the prediction model and identify critical features through explicable techniques, and only need 96% of the original work to achieve this goal, under the premise of ensuring specific prediction effects. Therefore, the application of interpretable techniques can significantly reduce the workload of developers and improve work efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元谷雪发布了新的文献求助10
1秒前
1秒前
2秒前
金福珠发布了新的文献求助10
2秒前
qiii发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
Wind应助ichia采纳,获得10
4秒前
yu完成签到,获得积分20
4秒前
4秒前
赘婿应助饱满凡灵采纳,获得30
4秒前
李耀京完成签到,获得积分10
5秒前
6秒前
蚝油盗梨发布了新的文献求助10
6秒前
yu发布了新的文献求助10
7秒前
希望天下0贩的0应助coco采纳,获得10
8秒前
活泼红牛完成签到,获得积分10
8秒前
8秒前
8秒前
yl发布了新的文献求助10
9秒前
英勇善愁完成签到,获得积分10
9秒前
田様应助别闹闹采纳,获得10
10秒前
CipherSage应助斯文可仁采纳,获得10
10秒前
羽翼发布了新的文献求助10
11秒前
方旋发布了新的文献求助10
11秒前
zhou完成签到,获得积分10
12秒前
厚朴发布了新的文献求助10
12秒前
无极微光应助知之采纳,获得20
13秒前
蜜桃乌龙茶完成签到,获得积分10
13秒前
千世kk发布了新的文献求助10
13秒前
小灰灰完成签到 ,获得积分10
13秒前
李旭涵发布了新的文献求助10
14秒前
流云完成签到,获得积分10
15秒前
九宝完成签到,获得积分10
16秒前
柯语雪完成签到 ,获得积分10
16秒前
16秒前
杏里发布了新的文献求助50
16秒前
哦萨尔完成签到,获得积分20
16秒前
领导范儿应助1237采纳,获得10
17秒前
17秒前
瓜瓜猫完成签到,获得积分10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233