亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretability application of the Just-in-Time software defect prediction model

可解释性 计算机科学 软件错误 预测建模 数据挖掘 软件 集合(抽象数据类型) 机器学习 编码(集合论) 粒度 人工智能 可靠性工程 工程类 操作系统 程序设计语言
作者
Wei Zheng,Tianren Shen,Xiang Chen,Peiran Deng
出处
期刊:Journal of Systems and Software [Elsevier BV]
卷期号:188: 111245-111245 被引量:76
标识
DOI:10.1016/j.jss.2022.111245
摘要

Software defect prediction is one of the most active fields in software engineering. Recently, some experts have proposed the Just-in-time Defect Prediction Technology. Just-in-time Defect prediction technology has become a hot topic in defect prediction due to its directness and fine granularity. This technique can predict whether a software defect exists in every code change submitted by a developer. In addition, the method has the advantages of high speed and easy tracking. However, the biggest challenge is that the prediction accuracy of Just-in-Time software is affected by the data set category imbalance. In most cases, 20% of defects in software engineering may be in 80% of modules, and code changes that do not cause defects account for a large proportion. Therefore, there is an imbalance in the data set, that is, the imbalance between a few classes and a majority of classes, which will affect the classification prediction effect of the model. Furthermore, because most features do not result in code changes that cause defects, it is not easy to achieve the desired results in practice even though the model is highly predictive. In addition, the features of the data set contain many irrelevant features and redundant features, which are invalid data, which will increase the complexity of the prediction model and reduce the prediction efficiency. To improve the prediction efficiency of Just-in-Time defect prediction technology. We trained a just-in-time defect prediction model using six open source projects from different fields based on random forest classification. LIME Interpretability technique is used to explain the model to a certain extent. By using explicable methods to extract meaningful, relevant features, the experiment can only need 45% of the original work to explain the prediction results of the prediction model and identify critical features through explicable techniques, and only need 96% of the original work to achieve this goal, under the premise of ensuring specific prediction effects. Therefore, the application of interpretable techniques can significantly reduce the workload of developers and improve work efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
sdjtxdy发布了新的文献求助10
1分钟前
1分钟前
sdjtxdy完成签到,获得积分10
1分钟前
dao发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
千里草完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
小奋青完成签到 ,获得积分10
4分钟前
忧伤的绍辉完成签到 ,获得积分10
4分钟前
kuoping完成签到,获得积分0
4分钟前
4分钟前
GPTea应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
Lucas应助科研通管家采纳,获得20
5分钟前
GPTea应助科研通管家采纳,获得10
5分钟前
cc完成签到,获得积分10
5分钟前
科研通AI5应助dao采纳,获得10
6分钟前
6分钟前
dao发布了新的文献求助10
7分钟前
zhaimen完成签到 ,获得积分10
7分钟前
馆长应助科研通管家采纳,获得50
7分钟前
GPTea应助科研通管家采纳,获得20
7分钟前
希望天下0贩的0应助lll采纳,获得10
8分钟前
sky11完成签到 ,获得积分10
8分钟前
8分钟前
lll发布了新的文献求助10
8分钟前
lll完成签到,获得积分10
8分钟前
GPTea应助科研通管家采纳,获得10
9分钟前
SciGPT应助科研通管家采纳,获得10
9分钟前
英俊的铭应助科研通管家采纳,获得50
9分钟前
韶绍完成签到 ,获得积分10
10分钟前
量子星尘发布了新的文献求助10
10分钟前
GPTea应助科研通管家采纳,获得10
11分钟前
GPTea应助科研通管家采纳,获得10
11分钟前
月军完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910211
求助须知:如何正确求助?哪些是违规求助? 4186186
关于积分的说明 12999166
捐赠科研通 3953517
什么是DOI,文献DOI怎么找? 2167972
邀请新用户注册赠送积分活动 1186428
关于科研通互助平台的介绍 1093500