Interpretability application of the Just-in-Time software defect prediction model

可解释性 计算机科学 软件错误 预测建模 数据挖掘 软件 集合(抽象数据类型) 机器学习 编码(集合论) 粒度 人工智能 可靠性工程 工程类 操作系统 程序设计语言
作者
Wei Zheng,Tianren Shen,Xiang Chen,Peiran Deng
出处
期刊:Journal of Systems and Software [Elsevier BV]
卷期号:188: 111245-111245 被引量:63
标识
DOI:10.1016/j.jss.2022.111245
摘要

Software defect prediction is one of the most active fields in software engineering. Recently, some experts have proposed the Just-in-time Defect Prediction Technology. Just-in-time Defect prediction technology has become a hot topic in defect prediction due to its directness and fine granularity. This technique can predict whether a software defect exists in every code change submitted by a developer. In addition, the method has the advantages of high speed and easy tracking. However, the biggest challenge is that the prediction accuracy of Just-in-Time software is affected by the data set category imbalance. In most cases, 20% of defects in software engineering may be in 80% of modules, and code changes that do not cause defects account for a large proportion. Therefore, there is an imbalance in the data set, that is, the imbalance between a few classes and a majority of classes, which will affect the classification prediction effect of the model. Furthermore, because most features do not result in code changes that cause defects, it is not easy to achieve the desired results in practice even though the model is highly predictive. In addition, the features of the data set contain many irrelevant features and redundant features, which are invalid data, which will increase the complexity of the prediction model and reduce the prediction efficiency. To improve the prediction efficiency of Just-in-Time defect prediction technology. We trained a just-in-time defect prediction model using six open source projects from different fields based on random forest classification. LIME Interpretability technique is used to explain the model to a certain extent. By using explicable methods to extract meaningful, relevant features, the experiment can only need 45% of the original work to explain the prediction results of the prediction model and identify critical features through explicable techniques, and only need 96% of the original work to achieve this goal, under the premise of ensuring specific prediction effects. Therefore, the application of interpretable techniques can significantly reduce the workload of developers and improve work efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴壮完成签到,获得积分10
1秒前
慕青应助柳七采纳,获得10
1秒前
rrrr发布了新的文献求助10
3秒前
Nancy完成签到,获得积分10
3秒前
温暖元容完成签到,获得积分10
4秒前
4秒前
万能图书馆应助aging123采纳,获得10
7秒前
十一完成签到,获得积分20
7秒前
7秒前
7秒前
8秒前
科研通AI5应助俊逸的翠容采纳,获得10
8秒前
火柴发布了新的文献求助10
8秒前
rrrr完成签到,获得积分20
9秒前
十一发布了新的文献求助10
11秒前
平安喜乐发布了新的文献求助10
12秒前
wangyu发布了新的文献求助10
13秒前
15秒前
天真初蝶完成签到,获得积分10
17秒前
科研通AI2S应助ohh采纳,获得10
17秒前
pluto应助南瓜汤采纳,获得10
18秒前
大模型应助崔梦楠采纳,获得10
18秒前
未来完成签到,获得积分10
19秒前
小乐完成签到,获得积分10
19秒前
STAR发布了新的文献求助10
20秒前
20秒前
22秒前
23秒前
24秒前
wangyu完成签到,获得积分10
24秒前
mmz完成签到 ,获得积分10
25秒前
26秒前
sevenseven完成签到 ,获得积分10
27秒前
邸增楼发布了新的文献求助10
27秒前
科研小白发布了新的文献求助10
27秒前
刘能能完成签到,获得积分10
28秒前
小邱完成签到 ,获得积分10
28秒前
帅气西牛完成签到,获得积分10
29秒前
小学徒发布了新的文献求助10
29秒前
大碗完成签到 ,获得积分10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667816
求助须知:如何正确求助?哪些是违规求助? 3226284
关于积分的说明 9768970
捐赠科研通 2936235
什么是DOI,文献DOI怎么找? 1608336
邀请新用户注册赠送积分活动 759642
科研通“疑难数据库(出版商)”最低求助积分说明 735434