Mobile visual search model for Dunhuang murals in the smart library

计算机科学 壁画 尺度不变特征变换 视觉搜索 情报检索 移动设备 聚类分析 文化遗产 人工智能 服务(商务) 计算机视觉 独创性 万维网 绘画 特征提取 地理 艺术 经济 考古 创造力 政治学 法学 经济 视觉艺术
作者
Ziming Zeng,Shouqiang Sun,Tingting Li,Jie Yin,Yueyan Shen
出处
期刊:Library Hi Tech [Emerald Publishing Limited]
卷期号:40 (6): 1796-1818 被引量:19
标识
DOI:10.1108/lht-03-2021-0079
摘要

Purpose The purpose of this paper is to build a mobile visual search service system for the protection of Dunhuang cultural heritage in the smart library. A novel mobile visual search model for Dunhuang murals is proposed to help users acquire rich knowledge and services conveniently. Design/methodology/approach First, local and global features of images are extracted, and the visual dictionary is generated by the k -means clustering. Second, the mobile visual search model based on the bag-of-words (BOW) and multiple semantic associations is constructed. Third, the mobile visual search service system of the smart library is designed in the cloud environment. Furthermore, Dunhuang mural images are collected to verify this model. Findings The findings reveal that the BOW_SIFT_HSV_MSA model has better search performance for Dunhuang mural images when the scale-invariant feature transform (SIFT) and the hue, saturation and value (HSV) are used to extract local and global features of the images. Compared with different methods, this model is the most effective way to search images with the semantic association in the topic, time and space dimensions. Research limitations/implications Dunhuang mural image set is a part of the vast resources stored in the smart library, and the fine-grained semantic labels could be applied to meet diverse search needs. Originality/value The mobile visual search service system is constructed to provide users with Dunhuang cultural services in the smart library. A novel mobile visual search model based on BOW and multiple semantic associations is proposed. This study can also provide references for the protection and utilization of other cultural heritages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得10
刚刚
刚刚
wanci应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
shouyu29应助科研通管家采纳,获得10
刚刚
劲秉应助科研通管家采纳,获得10
刚刚
DBEUV应助科研通管家采纳,获得10
刚刚
list应助科研通管家采纳,获得10
刚刚
实验好难应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
zbh应助科研通管家采纳,获得10
刚刚
list应助科研通管家采纳,获得10
刚刚
刚刚
黑球应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
烟花应助打工人采纳,获得10
2秒前
3秒前
科研通AI5应助刻苦的寒凝采纳,获得10
4秒前
yasuo发布了新的文献求助10
7秒前
8秒前
孤蚀月完成签到,获得积分10
8秒前
吱吱完成签到,获得积分10
9秒前
霸气的思柔完成签到,获得积分10
13秒前
Cnqaq发布了新的文献求助10
13秒前
13秒前
14秒前
爆米花应助aaa采纳,获得10
15秒前
Orange应助幸福的向彤采纳,获得10
16秒前
科研通AI5应助傲娇文博采纳,获得10
17秒前
渣渣发布了新的文献求助10
20秒前
cxh发布了新的文献求助10
20秒前
打工人发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672573
求助须知:如何正确求助?哪些是违规求助? 3228837
关于积分的说明 9782155
捐赠科研通 2939284
什么是DOI,文献DOI怎么找? 1610727
邀请新用户注册赠送积分活动 760709
科研通“疑难数据库(出版商)”最低求助积分说明 736198