🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

Federated Machine Learning for Detection of Skin Diseases and Enhancement of Internet of Medical Things (IoMT) Security

计算机科学 卷积神经网络 人工智能 机器学习 深度学习 医学影像学 模式识别(心理学)
作者
Md. Nazmul Hossen,Vijayakumari Panneerselvam,Deepika Koundal,Kawsar Ahmed,Francis M. Bui,Sobhy M. Ibrahim
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 835-841 被引量:79
标识
DOI:10.1109/jbhi.2022.3149288
摘要

Human skin disease, the most infectious dermatological ailment globally, is initially diagnosed by sight. Some clinical screening and dermoscopic analysis of skin biopsies and scrapings for accurate classification are medically compulsory. Classification of skin diseases using medical images is more challenging because of the complex formation and variant colors of the disease and data security concerns. Both the Convolution Neural Network (CNN) for classification and a federated learning approach for data privacy preservation show significant performance in the realm of medical imaging fields. In this paper, a custom image dataset was prepared with four classes of skin disease, a CNN model was suggested and compared with several benchmark CNN algorithms, and an experiment was carried out to ensure data privacy using a federated learning approach. An image augmentation strategy was followed to enlarge the dataset and make the model more general. The proposed model achieved a precision of 86%, 43%, and 60%, and a recall of 67%, 60%, and 60% for acne, eczema, and psoriasis. In the federated learning approach, after distributing the dataset among 1000, 1500, 2000, and 2500 clients, the model showed an average accuracy of 81.21%, 86.57%, 91.15%, and 94.15%. The CNN-based skin disease classification merged with the federated learning approach is a breathtaking concept to classify human skin diseases while ensuring data security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
营养小杨完成签到,获得积分10
2秒前
微醺钓青鱼完成签到 ,获得积分10
5秒前
CodeCraft应助碧蓝青梦采纳,获得30
6秒前
123完成签到 ,获得积分10
7秒前
葱油饼完成签到 ,获得积分10
8秒前
林夕完成签到 ,获得积分10
19秒前
辛勤的泽洋完成签到 ,获得积分10
19秒前
ssk完成签到,获得积分10
20秒前
笑点低的傲白完成签到,获得积分10
25秒前
炙热孤容完成签到 ,获得积分10
26秒前
雨水完成签到,获得积分10
30秒前
辛勤惜雪完成签到 ,获得积分10
37秒前
mumu完成签到,获得积分10
39秒前
英勇星月完成签到 ,获得积分10
40秒前
chrysan完成签到,获得积分10
45秒前
47秒前
36456657应助科研通管家采纳,获得20
47秒前
47秒前
JamesPei应助科研通管家采纳,获得10
47秒前
渊崖曙春应助科研通管家采纳,获得20
47秒前
47秒前
36456657应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
may发布了新的文献求助10
50秒前
onetec完成签到,获得积分10
50秒前
文献通完成签到 ,获得积分10
53秒前
风趣小蜜蜂完成签到,获得积分10
53秒前
ccccchen完成签到,获得积分0
55秒前
57秒前
854fycchjh完成签到,获得积分10
58秒前
Jimmy_King完成签到 ,获得积分10
58秒前
1分钟前
sdfwsdfsd完成签到,获得积分10
1分钟前
李东东完成签到 ,获得积分10
1分钟前
johnzsin发布了新的文献求助10
1分钟前
leo完成签到,获得积分10
1分钟前
alatangadasu完成签到,获得积分10
1分钟前
HCLonely完成签到,获得积分0
1分钟前
Star1983完成签到,获得积分10
1分钟前
古今奇观完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3604106
求助须知:如何正确求助?哪些是违规求助? 3172197
关于积分的说明 9573314
捐赠科研通 2878264
什么是DOI,文献DOI怎么找? 1580889
邀请新用户注册赠送积分活动 743268
科研通“疑难数据库(出版商)”最低求助积分说明 725900