SQNN: a spike-wave index quantification neural network with a pre-labeling algorithm for epileptiform activity identification and quantification in children

计算机科学 脑电图 模式识别(心理学) 人工智能 Spike(软件开发) 信号(编程语言) 鉴定(生物学) 语音识别 神经科学 植物 生物 软件工程 程序设计语言
作者
Yang Yu,Yehong Chen,Yuanxiang Li,Zaifen Gao,Zhongtao Gai,Ye Zhou
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (1): 016040-016040 被引量:1
标识
DOI:10.1088/1741-2552/ac542e
摘要

Objective.Electrical status epilepticus during slow sleep (ESES) is a phenomenon identified by strong activation of epileptiform activity in the electroencephalogram (EEG) during sleep. For children disturbed by ESES, spike-wave index (SWI) is defined to quantify the epileptiform activity in the EEG during sleep. Accurate SWI quantification is important for clinical diagnosis and prognosis. To quantify SWI automatically, a deep learning method is proposed in this paper.Approach.Firstly, a pre-labeling algorithm (PreLA) composed of the adaptive wavelet enhanced decomposition and a slow-wave discrimination rule is designed to efficiently label the EEG signal. It enables the collection of large-scale EEG dataset with fine-grained labels. Then, an SWI quantification neural network (SQNN) is constructed to accurately classify each sample point as normal or abnormal and to identify the abnormal events. SWI can be calculated automatically based on the total duration of abnormalities and the length of the signal.Main results.Experiments on two datasets demonstrate that the PreLA is effective and robust for labeling the EEG data and the SQNN accurately and reliably quantifies SWI without using any thresholds. The average estimation error of SWI is 3.12%, indicating that our method is more accurate and robust than experts and previous related works. The processing speed of SQNN is 100 times faster than that of experts.Significance.Deep learning provides a novel approach to automatic SWI quantification and PreLA provides an easy way to label the EEG data with ESES syndromes. The results of the experiments indicate that the proposed method has a high potential for clinical diagnosis and prognosis of epilepsy in children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助牛阳雨采纳,获得10
1秒前
共享精神应助仁爱曼梅采纳,获得10
2秒前
无限无声完成签到 ,获得积分10
2秒前
cccr完成签到,获得积分10
3秒前
共享精神应助舒适的素采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
星辰大海应助gzmejiji采纳,获得10
5秒前
曾泓跃发布了新的文献求助10
6秒前
6秒前
归尘应助二十一日采纳,获得30
7秒前
Litm完成签到 ,获得积分10
7秒前
8秒前
liu11发布了新的文献求助10
9秒前
李墩墩发布了新的文献求助10
10秒前
12秒前
RR完成签到 ,获得积分10
12秒前
12秒前
wanci应助99910119采纳,获得10
14秒前
liu11完成签到,获得积分10
15秒前
16秒前
热情冬灵发布了新的文献求助10
16秒前
Hannah发布了新的文献求助10
17秒前
希望天下0贩的0应助mym采纳,获得10
17秒前
舒适的素发布了新的文献求助10
17秒前
fzzf发布了新的文献求助10
18秒前
青筠发布了新的文献求助10
18秒前
天天快乐应助drift采纳,获得10
18秒前
大模型应助rachaoer采纳,获得10
19秒前
浮游应助唐阳采纳,获得10
20秒前
梓镱儿完成签到,获得积分10
21秒前
拼搏的璇发布了新的文献求助10
22秒前
23秒前
23秒前
年轻星星发布了新的文献求助10
23秒前
顾矜应助cccr采纳,获得10
24秒前
万能图书馆应助怠慢采纳,获得10
24秒前
君君发布了新的文献求助10
27秒前
27秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425064
求助须知:如何正确求助?哪些是违规求助? 4539194
关于积分的说明 14166180
捐赠科研通 4456338
什么是DOI,文献DOI怎么找? 2444167
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412494