已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SQNN: a spike-wave index quantification neural network with a pre-labeling algorithm for epileptiform activity identification and quantification in children

计算机科学 脑电图 模式识别(心理学) 人工智能 Spike(软件开发) 信号(编程语言) 鉴定(生物学) 语音识别 神经科学 植物 生物 软件工程 程序设计语言
作者
Yang Yu,Yehong Chen,Yuanxiang Li,Zaifen Gao,Zhongtao Gai,Ye Zhou
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (1): 016040-016040 被引量:1
标识
DOI:10.1088/1741-2552/ac542e
摘要

Objective.Electrical status epilepticus during slow sleep (ESES) is a phenomenon identified by strong activation of epileptiform activity in the electroencephalogram (EEG) during sleep. For children disturbed by ESES, spike-wave index (SWI) is defined to quantify the epileptiform activity in the EEG during sleep. Accurate SWI quantification is important for clinical diagnosis and prognosis. To quantify SWI automatically, a deep learning method is proposed in this paper.Approach.Firstly, a pre-labeling algorithm (PreLA) composed of the adaptive wavelet enhanced decomposition and a slow-wave discrimination rule is designed to efficiently label the EEG signal. It enables the collection of large-scale EEG dataset with fine-grained labels. Then, an SWI quantification neural network (SQNN) is constructed to accurately classify each sample point as normal or abnormal and to identify the abnormal events. SWI can be calculated automatically based on the total duration of abnormalities and the length of the signal.Main results.Experiments on two datasets demonstrate that the PreLA is effective and robust for labeling the EEG data and the SQNN accurately and reliably quantifies SWI without using any thresholds. The average estimation error of SWI is 3.12%, indicating that our method is more accurate and robust than experts and previous related works. The processing speed of SQNN is 100 times faster than that of experts.Significance.Deep learning provides a novel approach to automatic SWI quantification and PreLA provides an easy way to label the EEG data with ESES syndromes. The results of the experiments indicate that the proposed method has a high potential for clinical diagnosis and prognosis of epilepsy in children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助狂野忆文采纳,获得10
1秒前
SYLH应助狂野忆文采纳,获得10
1秒前
SYLH应助狂野忆文采纳,获得10
1秒前
SYLH应助狂野忆文采纳,获得10
1秒前
SYLH应助狂野忆文采纳,获得10
1秒前
科研通AI2S应助狂野忆文采纳,获得10
1秒前
扎心应助狂野忆文采纳,获得10
1秒前
扎心应助狂野忆文采纳,获得10
2秒前
科研通AI2S应助狂野忆文采纳,获得10
2秒前
充电宝应助狂野忆文采纳,获得10
2秒前
战战兢兢完成签到 ,获得积分10
10秒前
小宇完成签到 ,获得积分10
16秒前
华仔应助幽悠梦儿采纳,获得10
18秒前
jnoker完成签到 ,获得积分10
19秒前
要好好看文献完成签到,获得积分10
22秒前
RSU完成签到,获得积分10
24秒前
Owen应助阿尼采纳,获得10
24秒前
666666666666666完成签到 ,获得积分10
25秒前
李健的小迷弟应助六沉采纳,获得10
26秒前
32秒前
Nakacoke77完成签到,获得积分10
32秒前
yingying完成签到 ,获得积分10
33秒前
33秒前
34秒前
阿尼发布了新的文献求助10
37秒前
屠俊豪发布了新的文献求助10
41秒前
Narcissus完成签到,获得积分10
41秒前
43秒前
三三完成签到 ,获得积分10
45秒前
47秒前
屠俊豪完成签到,获得积分10
47秒前
六沉发布了新的文献求助10
49秒前
Owen应助科研通管家采纳,获得10
56秒前
GingerF应助科研通管家采纳,获得50
56秒前
阿尼完成签到,获得积分10
57秒前
六沉完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
minnie完成签到 ,获得积分10
1分钟前
akun完成签到,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965509
求助须知:如何正确求助?哪些是违规求助? 3510811
关于积分的说明 11155154
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804176