SQNN: a spike-wave index quantification neural network with a pre-labeling algorithm for epileptiform activity identification and quantification in children

计算机科学 脑电图 模式识别(心理学) 人工智能 Spike(软件开发) 信号(编程语言) 鉴定(生物学) 语音识别 神经科学 植物 生物 软件工程 程序设计语言
作者
Yang Yu,Yehong Chen,Yuanxiang Li,Zaifen Gao,Zhongtao Gai,Ye Zhou
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (1): 016040-016040 被引量:1
标识
DOI:10.1088/1741-2552/ac542e
摘要

Objective.Electrical status epilepticus during slow sleep (ESES) is a phenomenon identified by strong activation of epileptiform activity in the electroencephalogram (EEG) during sleep. For children disturbed by ESES, spike-wave index (SWI) is defined to quantify the epileptiform activity in the EEG during sleep. Accurate SWI quantification is important for clinical diagnosis and prognosis. To quantify SWI automatically, a deep learning method is proposed in this paper.Approach.Firstly, a pre-labeling algorithm (PreLA) composed of the adaptive wavelet enhanced decomposition and a slow-wave discrimination rule is designed to efficiently label the EEG signal. It enables the collection of large-scale EEG dataset with fine-grained labels. Then, an SWI quantification neural network (SQNN) is constructed to accurately classify each sample point as normal or abnormal and to identify the abnormal events. SWI can be calculated automatically based on the total duration of abnormalities and the length of the signal.Main results.Experiments on two datasets demonstrate that the PreLA is effective and robust for labeling the EEG data and the SQNN accurately and reliably quantifies SWI without using any thresholds. The average estimation error of SWI is 3.12%, indicating that our method is more accurate and robust than experts and previous related works. The processing speed of SQNN is 100 times faster than that of experts.Significance.Deep learning provides a novel approach to automatic SWI quantification and PreLA provides an easy way to label the EEG data with ESES syndromes. The results of the experiments indicate that the proposed method has a high potential for clinical diagnosis and prognosis of epilepsy in children.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
野生的阿撒卡完成签到,获得积分10
刚刚
1秒前
冷酷男人完成签到,获得积分10
1秒前
科研通AI6应助EnboFan采纳,获得10
1秒前
Li完成签到,获得积分20
1秒前
共享精神应助cjlee采纳,获得10
2秒前
Tomasong发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
凯凯发布了新的文献求助10
2秒前
wangsiheng发布了新的文献求助10
3秒前
婷婷的大宝剑完成签到 ,获得积分10
4秒前
Lucy完成签到,获得积分10
4秒前
4秒前
LanseR关注了科研通微信公众号
4秒前
风里等你发布了新的文献求助10
4秒前
Li发布了新的文献求助10
5秒前
今夕何夕发布了新的文献求助10
5秒前
三里墩头完成签到,获得积分10
6秒前
surain发布了新的文献求助10
6秒前
6秒前
舒克完成签到,获得积分10
6秒前
研友_VZG7GZ应助wulanrui采纳,获得10
6秒前
6秒前
er完成签到,获得积分20
6秒前
热情孤丹完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI6应助满意的盼芙采纳,获得10
7秒前
ximi完成签到,获得积分10
7秒前
8秒前
8秒前
田様应助艇仔采纳,获得10
8秒前
小学森发布了新的文献求助10
8秒前
爆米花应助tt采纳,获得10
8秒前
9秒前
个性的紫菜应助FAFA采纳,获得10
9秒前
er发布了新的文献求助10
9秒前
豆豆发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652241
求助须知:如何正确求助?哪些是违规求助? 4787067
关于积分的说明 15059109
捐赠科研通 4810870
什么是DOI,文献DOI怎么找? 2573458
邀请新用户注册赠送积分活动 1529283
关于科研通互助平台的介绍 1488194