Ultrasound Speckle Reduction using Wavelet-based Generative Adversarial Network

人工智能 计算机科学 小波 鉴别器 散斑噪声 计算机视觉 规范化(社会学) 斑点图案 模式识别(心理学) 降噪 图像质量 噪音(视频)
作者
Hee Guan Khor,Guochen Ning,Xinran Zhang,Hongen Liao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jbhi.2022.3144628
摘要

he visual quality of ultrasound (US) images is crucial for clinical diagnosis and treatment. The main source of image quality degradation is the inherent speckle noise generated during US image acquisition. Current deep learning-based methods cannot preserve the maximum boundary contrast when removing noise and speckle. In this paper, we address the issue by proposing a novel wavelet-based generative adversarial network (GAN) for real-time high quality US image reconstruction, viz. WGAN-DUS. First, we propose a batch normalization module (BNM) to balance the importance of each sub-band image and fuse sub-band features simultaneously. Then, a wavelet reconstruction module (WRM) integrated with a cascade of wavelet residual channel attention block (WRCAB) is proposed to extract distinctive sub-band features used to reconstruct denoised images. A gradual tuning strategy is proposed to fine-tune our generator for better despeckling performance. We further propose a wavelet-based discriminator and a comprehensive loss function to effectively suppress speckle noise and preserve the image features. Besides, we have designed an algorithm to estimate the noise levels during despeckling of real US images. The performance of our network was then evaluated on natural, synthetic, simulated and clinical US images and compared against various despeckling methods. To verify the feasibility of WGAN-DUS, we further extend our work to uterine fibroid segmentation with the denoised US image of the proposed approach. Experimental result demonstrates that our proposed method is feasible and can be generalized to clinical applications for despeckling of US images in real-time without losing its fine details.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助cc268采纳,获得10
1秒前
1秒前
上官若男应助公冶君浩采纳,获得10
1秒前
JHcHuN发布了新的文献求助10
1秒前
3秒前
立军发布了新的文献求助10
4秒前
Lim发布了新的文献求助10
4秒前
5秒前
W1ll完成签到,获得积分10
5秒前
科研通AI2S应助生5clean采纳,获得10
5秒前
6秒前
SciGPT应助踏雪寻梅采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得30
7秒前
FashionBoy应助科研通管家采纳,获得30
7秒前
7秒前
汉堡包应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
Hello应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
8秒前
子车茗应助爱撒娇的映阳采纳,获得10
8秒前
康zai发布了新的文献求助10
8秒前
Ava应助ruanyh采纳,获得10
9秒前
血魂完成签到,获得积分10
9秒前
9秒前
情怀应助风卡采纳,获得10
10秒前
虾条发布了新的文献求助10
11秒前
zhang完成签到,获得积分10
11秒前
街角哭泣完成签到,获得积分10
13秒前
香蕉寒梅完成签到,获得积分10
13秒前
踏雪寻梅完成签到,获得积分20
13秒前
CDN发布了新的文献求助10
14秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156078
求助须知:如何正确求助?哪些是违规求助? 2807458
关于积分的说明 7873196
捐赠科研通 2465782
什么是DOI,文献DOI怎么找? 1312412
科研通“疑难数据库(出版商)”最低求助积分说明 630102
版权声明 601905