Ultrasound Speckle Reduction using Wavelet-based Generative Adversarial Network

人工智能 计算机科学 小波 鉴别器 散斑噪声 计算机视觉 规范化(社会学) 斑点图案 模式识别(心理学) 降噪 图像质量 噪音(视频)
作者
Hee Guan Khor,Guochen Ning,Xinran Zhang,Hongen Liao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jbhi.2022.3144628
摘要

he visual quality of ultrasound (US) images is crucial for clinical diagnosis and treatment. The main source of image quality degradation is the inherent speckle noise generated during US image acquisition. Current deep learning-based methods cannot preserve the maximum boundary contrast when removing noise and speckle. In this paper, we address the issue by proposing a novel wavelet-based generative adversarial network (GAN) for real-time high quality US image reconstruction, viz. WGAN-DUS. First, we propose a batch normalization module (BNM) to balance the importance of each sub-band image and fuse sub-band features simultaneously. Then, a wavelet reconstruction module (WRM) integrated with a cascade of wavelet residual channel attention block (WRCAB) is proposed to extract distinctive sub-band features used to reconstruct denoised images. A gradual tuning strategy is proposed to fine-tune our generator for better despeckling performance. We further propose a wavelet-based discriminator and a comprehensive loss function to effectively suppress speckle noise and preserve the image features. Besides, we have designed an algorithm to estimate the noise levels during despeckling of real US images. The performance of our network was then evaluated on natural, synthetic, simulated and clinical US images and compared against various despeckling methods. To verify the feasibility of WGAN-DUS, we further extend our work to uterine fibroid segmentation with the denoised US image of the proposed approach. Experimental result demonstrates that our proposed method is feasible and can be generalized to clinical applications for despeckling of US images in real-time without losing its fine details.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sciforce完成签到,获得积分10
1秒前
2秒前
牧羊完成签到,获得积分10
2秒前
畅快的长颈鹿完成签到,获得积分10
2秒前
斯文败类应助杜兰特采纳,获得10
2秒前
hanahuang完成签到,获得积分10
3秒前
爱教育的张月亮完成签到,获得积分10
5秒前
充电宝应助叶95采纳,获得10
5秒前
nn发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
11秒前
12秒前
外向蜡烛发布了新的文献求助10
12秒前
脑洞疼应助shencan采纳,获得10
12秒前
白白完成签到 ,获得积分10
13秒前
杜兰特发布了新的文献求助10
14秒前
大个应助牧羊采纳,获得10
16秒前
tenacity完成签到,获得积分10
17秒前
宋宋完成签到 ,获得积分10
17秒前
18秒前
19秒前
19秒前
25秒前
shencan发布了新的文献求助10
25秒前
大模型应助能干的鞅采纳,获得10
27秒前
xdd驳回了yydragen应助
28秒前
30秒前
32秒前
小猪发布了新的文献求助10
33秒前
叶95发布了新的文献求助10
33秒前
34秒前
田様应助牛牛眉目采纳,获得10
34秒前
只吃煎饼不卷葱完成签到,获得积分10
35秒前
万能图书馆应助zqx采纳,获得10
35秒前
香蕉觅云应助阡陌采纳,获得10
36秒前
38秒前
38秒前
Kiling发布了新的文献求助20
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361