A Systematic View of Model Leakage Risks in Deep Neural Network Systems

计算机科学 深度学习 人工智能 人工神经网络 对抗制 建筑 模式(遗传算法) 先验与后验 机器学习 网络体系结构 计算机安全 认识论 哲学 艺术 视觉艺术
作者
Xing Hu,Ling Liang,Xiaobing Chen,Lei Deng,Yu Ji,Yufei Ding,Zidong Du,Qi Guo,Timothy Sherwood,Yuan Xie
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:8
标识
DOI:10.1109/tc.2022.3148235
摘要

As deep neural networks (DNNs) continue to find applications in ever more domains, the exact nature of the neural network architecture becomes an increasingly sensitive subject, due to either intellectual property protection or risks of adversarial attacks. While prior work has explored aspects of the risk associated with model leakage, exactly which parts of the model are most sensitive and how one infers the full architecture of the DNN when nothing is known about the structure a priori are problems that have been left unexplored. In this paper we address this gap, first by presenting a schema for reasoning about model leakage holistically, and then by proposing and quantitatively evaluating DeepSniffer, a novel learning-based model extraction framework that uses no prior knowledge of the victim model. DeepSniffer is robust to architectural and system noises introduced by the complex memory hierarchy and diverse run-time system optimizations. Taking GPU platforms as a showcase, DeepSniffer performs model extraction by learning both the architecture-level execution features of kernels and the inter-layer temporal association information introduced by the common practice of DNN design. We demonstrate that DeepSniffer works experimentally in the context of an off-the-shelf Nvidia GPU platform running a variety of DNN models and that the extracted models significantly improve attempts at crafting adversarial inputs. The DeepSniffer project has been released in https://github.com/xinghu7788/DeepSniffer .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
汉关发布了新的文献求助10
3秒前
¥¥¥¥¥¥¥¥完成签到 ,获得积分10
3秒前
XXF发布了新的文献求助10
3秒前
zrz发布了新的文献求助10
4秒前
4秒前
4秒前
田様应助BaekHyun采纳,获得10
6秒前
peng发布了新的文献求助10
6秒前
6秒前
7秒前
科研通AI5应助孔小白采纳,获得10
8秒前
8秒前
舒适逊完成签到 ,获得积分10
8秒前
科研通AI5应助11111采纳,获得10
9秒前
CipherSage应助hxn采纳,获得10
9秒前
11秒前
深情安青应助shatang采纳,获得10
11秒前
zxx5012发布了新的文献求助10
11秒前
芥丶子完成签到,获得积分10
12秒前
曾开心完成签到,获得积分10
12秒前
平淡南霜发布了新的文献求助10
12秒前
Blue_Pig发布了新的文献求助10
13秒前
李健的小迷弟应助逐风采纳,获得30
13秒前
yatou5651发布了新的文献求助10
14秒前
Akim应助和谐乌龟采纳,获得10
14秒前
peng完成签到,获得积分20
15秒前
CipherSage应助汉关采纳,获得10
15秒前
16秒前
16秒前
16秒前
丘比特应助XM采纳,获得10
16秒前
bkagyin应助Blue_Pig采纳,获得10
17秒前
18秒前
19秒前
19秒前
完美世界应助加油加油采纳,获得10
20秒前
20秒前
21秒前
ns发布了新的文献求助30
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808