Graphdiyne based GDY/CuI/NiO parallel double S-scheme heterojunction for efficient photocatalytic hydrogen evolution

光催化 制氢 异质结 材料科学 非阻塞I/O 光催化分解水 化学工程 X射线光电子能谱 分解水 催化作用 化学 光电子学 有机化学 工程类
作者
Zhiliang Jin,Xiangyi Wang,Xuqiang Hao,Guorong Wang,Xin Guo,Kai Wang
出处
期刊:2D materials [IOP Publishing]
卷期号:9 (2): 025014-025014 被引量:32
标识
DOI:10.1088/2053-1583/ac5462
摘要

Abstract As a new kind of two-dimensional (2D) layered carbon allotrope, graphdiyne (GDY) is rarely studied in the application field of photocatalytic hydrogen production. In addition, the efficient construction of photocatalyst heterostructure is a promising strategy to improve the yield of hydrogen production from photocatalytic split of water. Therefore, it is an excellent method to construct heterostructure photocatalytic system by introducing GDY into semiconductor photocatalytic materials. Herein, it is an excellent method to construct heterostructure photocatalytic system by introducing the cuprous iodide based 2D layered carbon allotrope (GDY) into metallic oxide semiconductor (NiO). Thus, a ternary hybrid photocatalyst (GDY/CuI/NiO) was prepared by in situ ultrasonic agitation method. X-ray diffraction, SEM, transmission electron microscope and x-ray photoelectron spectroscopy results showed that NiO nanosheets were successfully adsorbed by GDY/CuI. In addition, the composite catalyst (GDY/CuI/NiO) showed excellent photocatalytic performance, which performed a high hydrogen production activity of 5955 μ mol g −1 and good stability in the 20 h hydrogen production experiment. Amorphous GDY provides more active sites for the process of hydrogen evolution in this photocatalytic system. Most importantly, the construction of S-scheme heterojunction promotes electron transfer and plays an important role in enhancing the hydrogen production activity. These findings provide new ideas for realizing efficient solar hydrogen production system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala发布了新的文献求助10
1秒前
乐乐应助开朗的水彤采纳,获得10
2秒前
2秒前
4秒前
4秒前
yiseeya应助然然采纳,获得10
4秒前
锂氧完成签到 ,获得积分10
5秒前
tzy完成签到,获得积分10
5秒前
孙非完成签到,获得积分10
6秒前
ewk发布了新的文献求助10
7秒前
新星完成签到 ,获得积分10
7秒前
7秒前
lalala发布了新的文献求助10
10秒前
CX330发布了新的文献求助10
13秒前
13秒前
英姑应助研友_nVqwxL采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
14秒前
123应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得30
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
飘1234关注了科研通微信公众号
16秒前
Apricity完成签到,获得积分10
19秒前
空枉存完成签到,获得积分10
20秒前
20秒前
Ganlou应助阿冰采纳,获得10
22秒前
甜甜玫瑰应助阿冰采纳,获得10
22秒前
爱听歌土豆完成签到,获得积分10
22秒前
22秒前
学术小白发布了新的文献求助30
23秒前
Gao_Z_X完成签到 ,获得积分10
23秒前
AMM完成签到,获得积分10
23秒前
CX330完成签到,获得积分10
23秒前
23秒前
空枉存发布了新的文献求助10
26秒前
marstar完成签到,获得积分10
26秒前
QR发布了新的文献求助10
27秒前
yaqin@9909发布了新的文献求助10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306214
求助须知:如何正确求助?哪些是违规求助? 2939998
关于积分的说明 8495520
捐赠科研通 2614302
什么是DOI,文献DOI怎么找? 1428092
科研通“疑难数据库(出版商)”最低求助积分说明 663259
邀请新用户注册赠送积分活动 648071