血管平滑肌
MFN2型
医学
运行x2
基因沉默
钙化
细胞生物学
癌症研究
分子生物学
生物
内分泌学
病理
线粒体融合
基因表达
生物化学
平滑肌
线粒体DNA
基因
作者
Wei Zhang,Siyi Feng,Zhan-Xiang Xiao,You-Fei Qi,Zhaofan Zeng,Hao Chen
标识
DOI:10.1016/j.ijcard.2022.06.033
摘要
Vascular calcification (VC), as a prevalent feature of atherosclerosis (AS), is a life-threatening pathological change. Mitofusin 2 (MFN2) has been reported to be down-regulated and participate in the pathogenesis of AS. Here, we explored the feasible impacts of MFN2 on VC in AS.Atherosclerotic lesion was evaluated by Oil Red O staining. The VC was detected by Alizarin Red S staining, ALP staining, and calcium content in vascular smooth muscle cells (VSMCs) or atherosclerotic mice. The chondrocyte differentiation of VSMCs was measured by Alcian blue staining. Western blotting and qRT-PCR were used to determine the protein and mRNA expression of associated molecules. Intermolecular interaction was measured by ChIP and dual luciferase assays.The expression of MFN2 and E2F1 was reduced in the aorta tissues of AS patients and mice. Silencing of MFN2 drove calcification in VSMCs and aortas of atherosclerotic mice as confirmed by up-regulating RUNX2, OPG levels, and down-regulating SM22α, α-SMA levels. The chondrocyte differentiation of VSMCs was accelerated by MFN2 knockdown through inducing the expression of Aggrecan, Collagen II, and SOX9. In addition, E2F1 promoted the transcription and expression of MFN2 in VSMCs. Overexpression of MFN2 or E2F1 suppressed ox-LDL-induced VSMC calcification. Finally, MFN2 depletion enhanced VSMC calcification via activating RAS-RAF-ERK1/2 pathway.Our results suggest that silencing of MFN2 drives VC via activating RAS-RAF-ERK1/2 pathway in the progression of AS, thus MFN2 may be a therapeutic target for AS.
科研通智能强力驱动
Strongly Powered by AbleSci AI