鉴别器
计算机科学
发电机(电路理论)
判别式
二进制数
预处理器
公制(单位)
算法
标杆管理
人工智能
数据挖掘
数学
工程类
探测器
营销
业务
电信
功率(物理)
运营管理
物理
算术
量子力学
作者
Mohammad Esmaeilpour,Nourhene Chaalia,Adel Abusitta,Franşois-Xavier Devailly,Wissem Maazoun,Patrick Cardinal
标识
DOI:10.1016/j.patrec.2022.05.023
摘要
• Developing a novel data preprocessing scheme using Chi-squared function. • Proposing a new conditional term for the generator network in a GAN setup. • Implementing a bi-discriminator GAN for stable training. • Designing straightforward architectures for generator and discriminator networks. This paper introduces a bi-discriminator GAN for synthesizing tabular datasets containing continuous, binary, and discrete columns. Our proposed approach employs an adapted preprocessing scheme and a novel conditional term using the χ β 2 distribution for the generator network to more effectively capture the input sample distributions. Additionally, we implement straightforward yet effective architectures for discriminator networks aiming at providing more discriminative gradient information to the generator. Our experimental results on four benchmarking public datasets corroborates the superior performance of our GAN both in terms of likelihood fitness metric and machine learning efficacy.
科研通智能强力驱动
Strongly Powered by AbleSci AI