Efficient Short-Term Electricity Load Forecasting for Effective Energy Management

均方误差 计算机科学 残余物 平均绝对百分比误差 能源管理 能源消耗 电力负荷 人工神经网络 人工智能 卷积神经网络 期限(时间) 数据挖掘 能量(信号处理) 功率(物理) 工程类 统计 物理 数学 算法 量子力学 电气工程
作者
Zulfiqar Ahmad Khan,Amin Ullah,Ijaz Ul Haq,Mohamed S. Hamdy,Gerardo Maria Mauro,Khan Muhammad,Mohammad Hijji,Sung Wook Baik
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier]
卷期号:53: 102337-102337 被引量:71
标识
DOI:10.1016/j.seta.2022.102337
摘要

• A two-phased framework for short-term electricity forecasting. • A novel data preprocessing strategy is introduced to refine the raw data. • An end-to-end hybrid residual CNN with stacked LSTM model for electricity forecasting. • A detailed ablation study is conducted to ensure the effectiveness of proposed model. • The performance is compared with state-of-the-art models over several benchmark datasets. Short-term electrical energy load forecasting is one of the most significant problems associated with energy management for smart grids, which aims to optimize the operational strategies of buildings. Electricity forecasting models are considered a key aspect of the provision of better electricity management and reductions in energy consumption. This motivates the researchers to develop efficient electricity load forecasting (ELF) models, based on historical nonlinear and high volatile data, which require appropriate forecasting strategies. Therefore, in this article, we present an innovative two-phase framework for short-term ELF. The first phase is dedicated to data cleansing, in which pre-processing strategies are applied to raw data. In the second phase, a deep residual Convolutional Neural Network (CNN) is designed to extract the important features from the refined data. To the best of our knowledge, this is the first work to introduce a deep CNN architecture for the extraction of spatial features from electricity data. The output of the residual CNN network is forwarded to a stacked Long Short-Term Memory (LSTM) network to learn the temporal information of the electricity data. The proposed model is then evaluated using the Individual-Household-Electric-Power-Consumption (IHEPC) and Pennsylvania–New Jersey–Maryland (PJM) datasets. The results reveal a significant reduction in the error rate over the IHEPC dataset in terms of Mean-Absolute-Error (MAE) (15.65%), Mean-Square-Error (MSE) (8.77%), and Root-Mean-Square-Error (RMSE) (14.85%) and over the PJM dataset our method reduced RMSE up to 3.4% as compared to baseline models i.e., linear regression, LSTM, and Gated Recurrent Unit (GRU). Furthermore, we performed several experiments with CNN, LSTM, and GRU models and evaluated it with additional Coefficient of Variation of the RMSE (CV-RMSE) metrics, which proves the effectiveness of our model for short-term load forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助飘逸的山柏采纳,获得10
刚刚
1秒前
范冰冰发布了新的文献求助10
2秒前
3秒前
小鱼儿完成签到,获得积分10
5秒前
自由的风发布了新的文献求助10
5秒前
天天快乐应助康超采纳,获得10
6秒前
7秒前
科研通AI5应助chenting采纳,获得10
7秒前
7秒前
ANdrey发布了新的文献求助10
8秒前
yyy完成签到,获得积分10
10秒前
10秒前
Xiaoxiao应助端庄的白开水采纳,获得10
11秒前
13秒前
牧云发布了新的文献求助10
13秒前
852应助曾经不言采纳,获得10
14秒前
15秒前
乔乔发布了新的文献求助10
16秒前
HB完成签到,获得积分10
16秒前
梅子完成签到 ,获得积分10
16秒前
荣弟完成签到,获得积分10
17秒前
17秒前
可可豆发布了新的文献求助20
17秒前
18秒前
科研通AI5应助ANdrey采纳,获得30
19秒前
jdz546429289完成签到,获得积分20
19秒前
21秒前
jdz546429289发布了新的文献求助10
21秒前
orixero应助陈丫采纳,获得10
22秒前
瘦瘦新烟完成签到,获得积分10
24秒前
汉堡包应助嘟嘟嘟采纳,获得10
24秒前
乔乔完成签到,获得积分10
25秒前
wjl发布了新的文献求助10
25秒前
26秒前
大华完成签到,获得积分10
28秒前
Hello应助土大款采纳,获得10
28秒前
aaaaa完成签到,获得积分10
29秒前
Metrix应助程风破浪采纳,获得10
30秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516009
求助须知:如何正确求助?哪些是违规求助? 3098158
关于积分的说明 9238366
捐赠科研通 2793178
什么是DOI,文献DOI怎么找? 1532872
邀请新用户注册赠送积分活动 712408
科研通“疑难数据库(出版商)”最低求助积分说明 707256