VOC Mixture Sensing with a MOF Film Sensor Array: Detection and Discrimination of Xylene Isomers and Their Ternary Blends

三元运算 二甲苯 化学 材料科学 化学工程 有机化学 工程类 计算机科学 程序设计语言
作者
Peng Qin,B. Day,Salih Okur,Chun Li,Abhinav Chandresh,Christopher E. Wilmer,Lars Heinke
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:7 (6): 1666-1675 被引量:53
标识
DOI:10.1021/acssensors.2c00301
摘要

Detection and recognition of volatile organic compounds (VOCs) are crucial in many applications. While pure VOCs can be detected by various sensors, the discrimination of VOCs in mixtures, especially of similar molecules, is hindered by cross-sensitivities. Isomer identification in mixtures is even harder. Metal-organic frameworks (MOFs) with their well-defined, nanoporous, and versatile structures have the potential to improve the VOC sensing performance by tailoring the adsorption affinities. Here, we detect and identify ternary xylene isomer mixtures by using an array of six gravimetric, quartz crystal microbalance (QCM)-based sensors coated with selected MOF films with different isomer affinities. We use classical molecular simulations to provide insights into the sensing mechanism. In addition to the attractive interaction between the analytes and the MOF film, the isomer discrimination is caused by the rigid crystalline framework sterically controlling the access of the isomers to different adsorption sites in the MOFs. The sensor array has a very low limit of detection of 1 ppm for each pure isomer and allows the isomer discrimination in mixtures. At 100 ppm, 16 different ternary o-p-m-xylene mixtures were identified with high classification accuracy (96.5%). This work shows the unprecedented performance of MOF-sensor arrays, also referred to as MOF-electronic nose (MOF-e-nose), for sensing VOC mixtures. Based on the study, guidelines for detecting and discriminating complex mixtures of volatile molecules are also provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助KitasanHN采纳,获得30
2秒前
南吕完成签到,获得积分10
2秒前
4秒前
蛋炒饭香喷喷儿完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
Orange应助哦哦采纳,获得10
9秒前
10秒前
poyo发布了新的文献求助10
11秒前
12秒前
huhu完成签到,获得积分10
13秒前
怡然诗珊完成签到,获得积分20
13秒前
14秒前
小明完成签到,获得积分10
15秒前
左左发布了新的文献求助10
15秒前
15秒前
长孙寻桃发布了新的文献求助10
17秒前
17秒前
小六发布了新的文献求助10
17秒前
rong完成签到 ,获得积分10
19秒前
KitasanHN发布了新的文献求助30
19秒前
晨云发布了新的文献求助10
20秒前
21秒前
21秒前
24秒前
发疯研究生完成签到,获得积分20
24秒前
失眠的惜天完成签到,获得积分10
29秒前
29秒前
晨云完成签到,获得积分10
30秒前
长孙寻桃完成签到,获得积分10
31秒前
是容与呀完成签到,获得积分10
31秒前
39秒前
香蕉觅云应助温暖寻雪采纳,获得10
41秒前
poyo完成签到,获得积分10
43秒前
44秒前
rtx00完成签到,获得积分10
45秒前
voyager完成签到,获得积分10
47秒前
iNk应助一粟采纳,获得10
48秒前
48秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316201
求助须知:如何正确求助?哪些是违规求助? 2947786
关于积分的说明 8538590
捐赠科研通 2623888
什么是DOI,文献DOI怎么找? 1435612
科研通“疑难数据库(出版商)”最低求助积分说明 665632
邀请新用户注册赠送积分活动 651457