Game-Based Backstepping Design for Strict-Feedback Nonlinear Multi-Agent Systems Based on Reinforcement Learning

反推 控制理论(社会学) 强化学习 非线性系统 计算机科学 有界函数 人工神经网络 跟踪误差 控制器(灌溉) 趋同(经济学) 贝尔曼方程 数学优化 数学 自适应控制 控制(管理) 人工智能 数学分析 物理 量子力学 农学 经济 生物 经济增长
作者
Long Jia,Dengxiu Yu,Guoxing Wen,Li Li,Zhen Wang,C. L. Philip Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 817-830 被引量:45
标识
DOI:10.1109/tnnls.2022.3177461
摘要

In this article, the game-based backstepping control method is proposed for the high-order nonlinear multi-agent system with unknown dynamic and input saturation. Reinforcement learning (RL) is employed to get the saddle point solution of the tracking game between each agent and the reference signal for achieving robust control. Specifically, the approximate optimal solution of the established Hamilton-Jacobi-Isaacs (HJI) equation is obtained by policy iteration for each subsystem, and the single network adaptive critic (SNAC) architecture is used to reduce the computational burden. In addition, based on the separation operation of the error term from the derivative of the value function, we achieve the different proportions of the two agents in the game to realize the regulation of the final equilibrium point. Different from the general use of the neural network for system identification, the unknown nonlinear dynamic term is approximated based on the state difference obtained by the command filter. Furthermore, a sufficient condition is established to guarantee that the whole system and each subsystem included are uniformly ultimately bounded. Finally, simulation results are given to show the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
深情安青应助小麦采纳,获得10
3秒前
浮游应助lemonyu采纳,获得10
5秒前
xiewuhua发布了新的文献求助10
5秒前
Regulusyang完成签到,获得积分10
5秒前
innocent完成签到 ,获得积分10
6秒前
桃洛璟发布了新的文献求助10
6秒前
7秒前
7秒前
猪猪猪发布了新的文献求助10
7秒前
8秒前
9秒前
何ry发布了新的文献求助10
10秒前
11秒前
poorzz发布了新的文献求助10
12秒前
Liu完成签到,获得积分10
12秒前
Hiker发布了新的文献求助10
12秒前
orixero应助迅速的大山采纳,获得10
13秒前
14秒前
科研通AI6应助猪猪猪采纳,获得10
14秒前
顾矜应助桃洛璟采纳,获得10
14秒前
爱啥啥发布了新的文献求助10
15秒前
方不可方可完成签到,获得积分10
16秒前
16秒前
星辰大海应助含糊的台灯采纳,获得10
17秒前
18秒前
赵乂发布了新的文献求助10
20秒前
20秒前
wbj发布了新的文献求助10
20秒前
22秒前
Yaon-Xu完成签到,获得积分10
23秒前
23秒前
23秒前
23秒前
王迪完成签到,获得积分10
24秒前
小麦发布了新的文献求助10
24秒前
asda完成签到,获得积分20
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642999
求助须知:如何正确求助?哪些是违规求助? 4760428
关于积分的说明 15019750
捐赠科研通 4801483
什么是DOI,文献DOI怎么找? 2566801
邀请新用户注册赠送积分活动 1524658
关于科研通互助平台的介绍 1484255