Derivation and external validation of a 30-day mortality risk prediction model for older patients having emergency general surgery

医学 逻辑回归 外部有效性 人口 预测建模 校准 急诊医学 风险评估 弗雷明翰风险评分 协议(科学) 统计 内科学 计算机科学 环境卫生 替代医学 数学 计算机安全 病理 疾病
作者
Simon Feng,Carl van Walraven,Manoj M. Lalu,Husein Moloo,Reilly P. Musselman,Daniel I. McIsaac
出处
期刊:BJA: British Journal of Anaesthesia [Elsevier]
标识
DOI:10.1016/j.bja.2022.04.007
摘要

Older people (≥65 yr) are at increased risk of morbidity and mortality after emergency general surgery. Risk prediction models are needed to guide decision making in this high-risk population. Existing models have substantial limitations and lack external validation, potentially limiting their applicability in clinical use. We aimed to derive and validate, both internally and externally, a multivariable model to predict 30-day mortality risk in older patients undergoing emergency general surgery.After protocol publication, we used the National Surgical Quality Improvement Program (NSQIP) database (2012-6; estimated to contain 90% data from the USA and 10% from Canada) to derive and internally validate a model to predict 30-day mortality for older people having emergency general surgery using logistic regression with elastic net regularisation. Internal validation was done with 10-fold cross-validation. External validation was done using a temporally separate health administrative database exclusively from Ontario, Canada.Overall, 6012 (12.0%) of the 50 221 patients died within 30 days. The model demonstrated strong discrimination (area under the curve [AUC]=0.871) and calibration across the spectrum of observed and predicted risks. Ten-fold internal cross-validation demonstrated minimal optimism (AUC=0.851, optimism 0.019 [standard deviation=0.06]) with excellent calibration. External validation demonstrated lower discrimination (AUC=0.700) and degraded calibration.A multivariable mortality risk prediction model was strongly discriminative and well calibrated internally. However, poor external validation suggests the model may not be generalisable to non-NSQIP data and hospitals. The findings highlight the importance of external validation before clinical application of risk models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美满的小懒虫完成签到 ,获得积分10
1秒前
1秒前
wuxunxun2015发布了新的文献求助10
2秒前
汉堡包应助will采纳,获得10
2秒前
LHX发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
luen发布了新的文献求助10
4秒前
4秒前
我爱看文献完成签到,获得积分10
5秒前
阿独完成签到,获得积分10
10秒前
科研通AI6应助美好斓采纳,获得30
11秒前
11秒前
激动的项链完成签到,获得积分10
11秒前
13秒前
14秒前
ZZZ发布了新的文献求助30
14秒前
丘比特应助chcui采纳,获得10
14秒前
啦啦完成签到 ,获得积分10
15秒前
这世界折磨我完成签到,获得积分10
15秒前
luen完成签到,获得积分20
17秒前
17秒前
kkkkkkkkkkk发布了新的文献求助10
19秒前
张博发布了新的文献求助10
20秒前
啵啵阳子完成签到,获得积分10
21秒前
善学以致用应助苞米粒粒采纳,获得10
21秒前
21秒前
Angie完成签到,获得积分20
21秒前
小药童应助风清扬采纳,获得10
22秒前
lulu完成签到,获得积分10
22秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
完美世界应助wuxunxun2015采纳,获得10
24秒前
lokiyyy完成签到 ,获得积分10
25秒前
科研通AI6应助li采纳,获得10
26秒前
手抖的粉恐龙完成签到,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613426
求助须知:如何正确求助?哪些是违规求助? 4698635
关于积分的说明 14898394
捐赠科研通 4736224
什么是DOI,文献DOI怎么找? 2547047
邀请新用户注册赠送积分活动 1511004
关于科研通互助平台的介绍 1473546