Derivation and external validation of a 30-day mortality risk prediction model for older patients having emergency general surgery

医学 逻辑回归 外部有效性 人口 预测建模 校准 急诊医学 风险评估 弗雷明翰风险评分 协议(科学) 统计 内科学 计算机科学 环境卫生 病理 计算机安全 数学 替代医学 疾病
作者
Simon Feng,Carl van Walraven,Manoj M. Lalu,Husein Moloo,Reilly P. Musselman,Daniel I. McIsaac
出处
期刊:BJA: British Journal of Anaesthesia [Elsevier BV]
标识
DOI:10.1016/j.bja.2022.04.007
摘要

Older people (≥65 yr) are at increased risk of morbidity and mortality after emergency general surgery. Risk prediction models are needed to guide decision making in this high-risk population. Existing models have substantial limitations and lack external validation, potentially limiting their applicability in clinical use. We aimed to derive and validate, both internally and externally, a multivariable model to predict 30-day mortality risk in older patients undergoing emergency general surgery.After protocol publication, we used the National Surgical Quality Improvement Program (NSQIP) database (2012-6; estimated to contain 90% data from the USA and 10% from Canada) to derive and internally validate a model to predict 30-day mortality for older people having emergency general surgery using logistic regression with elastic net regularisation. Internal validation was done with 10-fold cross-validation. External validation was done using a temporally separate health administrative database exclusively from Ontario, Canada.Overall, 6012 (12.0%) of the 50 221 patients died within 30 days. The model demonstrated strong discrimination (area under the curve [AUC]=0.871) and calibration across the spectrum of observed and predicted risks. Ten-fold internal cross-validation demonstrated minimal optimism (AUC=0.851, optimism 0.019 [standard deviation=0.06]) with excellent calibration. External validation demonstrated lower discrimination (AUC=0.700) and degraded calibration.A multivariable mortality risk prediction model was strongly discriminative and well calibrated internally. However, poor external validation suggests the model may not be generalisable to non-NSQIP data and hospitals. The findings highlight the importance of external validation before clinical application of risk models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu发布了新的文献求助10
刚刚
刚刚
2秒前
跳跃毒娘完成签到,获得积分10
2秒前
nkym发布了新的文献求助10
3秒前
万能图书馆应助红红采纳,获得10
3秒前
万能图书馆应助lynch采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
跳跳发布了新的文献求助10
4秒前
所所应助科研通管家采纳,获得10
4秒前
Hello应助鹿茸采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得80
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
ccm应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
5秒前
wwwwyx发布了新的文献求助10
5秒前
5秒前
跳跃毒娘发布了新的文献求助10
5秒前
siu完成签到 ,获得积分10
6秒前
小胡发布了新的文献求助10
6秒前
方囧完成签到,获得积分10
8秒前
zhan完成签到,获得积分10
9秒前
斯文败类应助lio采纳,获得10
9秒前
研友_VZG7GZ应助liu采纳,获得10
9秒前
10秒前
今后应助儒雅晓霜采纳,获得20
12秒前
13秒前
万能图书馆应助吴律采纳,获得10
14秒前
15秒前
Wu完成签到 ,获得积分10
15秒前
sonicgoboy完成签到,获得积分10
17秒前
xyz完成签到,获得积分10
17秒前
miketyson完成签到,获得积分10
17秒前
lynch发布了新的文献求助10
18秒前
尽舜尧完成签到,获得积分10
18秒前
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120563
求助须知:如何正确求助?哪些是违规求助? 4325901
关于积分的说明 13478119
捐赠科研通 4159552
什么是DOI,文献DOI怎么找? 2279551
邀请新用户注册赠送积分活动 1281381
关于科研通互助平台的介绍 1220210