Breast DCE-MRI segmentation for lesion detection using Chimp Optimization Algorithm

人工智能 分割 计算机科学 威尔科克森符号秩检验 图像分割 马尔可夫随机场 算法 阈值 模式识别(心理学) 粒子群优化 数学 图像(数学) 统计 曼惠特尼U检验
作者
Tapas Si,Dipak Kumar Patra,Sukumar Mondal,Prakash Mukherjee
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:204: 117481-117481 被引量:14
标识
DOI:10.1016/j.eswa.2022.117481
摘要

The high prevalence of breast cancer in women has increased dramatically in recent times. Physician’s knowledge in breast cancer diagnosis and detection using computerized algorithms for extraction and segmentation of features can help. Image segmentation is a critical component of image analysis that has a direct impact on the quality of the results. This article presents Kapur’s entropy-based multilevel thresholding using Chimp Optimization Algorithm (ChOA) to estimate optimal values for the lesion segmentation of breast DCE-MRI. An improved ChOA is also developed by incorporating Opposition based-learning (OBL) in it, termed as ChOAOBL, and applied to solve the same problem. The proposed methods are evaluated using 200 Sagittal T2-Weighted fat-suppressed DCE-MRI images of 40 patients. The proposed methods are compared with Improved ChOA (IChOA), Particle Swarm Optimization (PSO), Multi-verse Optimizer (MVO), Slime Mould Algorithm (SMA), Arithmetic Optimization Algorithm (AOA), Tunicate Swarm Algorithm (TSA), Multilevel Otsu Threshold (MLOT), Conventional Markov Random Field (CMRF), Hidden Markov Random Field (HMRF), and Improved Markov Random Field (IMRF). The high sensitivity, accuracy, and Dice Efficient Coefficient (DSC) level of the proposed ChOA-based method are achieved at 90.75%, 98.24%, and 87.09% respectively. The accuracy value of 99.02%, sensitivity 95.73%, and DSC 93.25% are achieved using another proposed ChOAOBL-based segmentation method. The results are analyzed using a one-way ANOVA test followed by Tukey HSD, and Wilcoxon Signed Rank Test. We have also analyzed the overall performance using Multi-Criteria Decision Making based on accuracy, precision, specificity, F-measure, sensitivity, false-positive rate, Geometric-Mean (G-mean), and DSC. The proposed methods outperform other compared methods, according to both quantitative and qualitative outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱的魔力转圈圈完成签到,获得积分10
2秒前
Hui_2023发布了新的文献求助10
5秒前
6秒前
冥灵花火完成签到,获得积分10
6秒前
8秒前
chenzhi发布了新的文献求助10
9秒前
科研通AI6应助爱狗人士Hito采纳,获得50
9秒前
Ava应助独特广山采纳,获得10
10秒前
11秒前
15秒前
小傅发布了新的文献求助10
15秒前
田様应助辜卅采纳,获得10
15秒前
15秒前
叶叶叶完成签到 ,获得积分10
15秒前
咸鱼好翻身完成签到,获得积分10
16秒前
大力蚂蚁完成签到 ,获得积分10
18秒前
19秒前
20秒前
Verity应助Guowei采纳,获得10
20秒前
acadedog发布了新的文献求助10
21秒前
guoweismmu发布了新的文献求助20
23秒前
cherylizan完成签到,获得积分10
23秒前
丹丹子完成签到 ,获得积分10
24秒前
yydd发布了新的文献求助10
24秒前
Parrot_PAI完成签到,获得积分10
25秒前
英姑应助Diplogen采纳,获得10
26秒前
coffee发布了新的文献求助10
27秒前
HK完成签到,获得积分10
28秒前
忆茶戏完成签到 ,获得积分10
28秒前
单身的傲玉完成签到 ,获得积分10
29秒前
樱花打落雨完成签到,获得积分10
30秒前
32秒前
ming发布了新的文献求助20
32秒前
orixero应助Chaimengdi采纳,获得10
33秒前
我是老大应助Wtian采纳,获得10
33秒前
34秒前
lucas发布了新的文献求助10
35秒前
李健的粉丝团团长应助zzz采纳,获得10
41秒前
元谷雪完成签到,获得积分10
42秒前
雷雷完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675591
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516526
邀请新用户注册赠送积分活动 1490130
关于科研通互助平台的介绍 1460963