Artificial Intelligence-Enabled Electrocardiogram Improves the Diagnosis and Prediction of Mortality in Patients With Pulmonary Hypertension

医学 内科学 心脏病学 队列 肺动脉高压 接收机工作特性 肺动脉
作者
Chih‐Min Liu,Edward S.C. Shih,Jhih-Yu Chen,Chih-Han Huang,I‐Chien Wu,Pei‐Fen Chen,Satoshi Higa,Nobumori Yagi,Yu‐Feng Hu,Ming‐Jing Hwang,Shih‐Ann Chen
出处
期刊:JACC: Asia [Elsevier]
卷期号:2 (3): 258-270 被引量:16
标识
DOI:10.1016/j.jacasi.2022.02.008
摘要

Pulmonary hypertension is a disabling and life-threatening cardiovascular disease. Early detection of elevated pulmonary artery pressure (ePAP) is needed for prompt diagnosis and treatment to avoid detrimental consequences of pulmonary hypertension.This study sought to develop an artificial intelligence (AI)-enabled electrocardiogram (ECG) model to identify patients with ePAP and related prognostic implications.From a hospital-based ECG database, the authors extracted the first pairs of ECG and transthoracic echocardiography taken within 2 weeks of each other from 41,097 patients to develop an AI model for detecting ePAP (PAP > 50 mm Hg by transthoracic echocardiography). The model was evaluated on independent data sets, including an external cohort of patients from Japan.Tests of 10-fold cross-validation neural-network deep learning showed that the area under the receiver-operating characteristic curve of the AI model was 0.88 (sensitivity 81.0%; specificity 79.6%) for detecting ePAP. The diagnostic performance was consistent across age, sex, and various comorbidities (diagnostic odds ratio >8 for most factors examined). At 6-year follow-up, the patients predicted by the AI model to have ePAP were independently associated with higher cardiovascular mortality (HR: 3.69). Similar diagnostic performance and prediction for cardiovascular mortality could be replicated in the external cohort.The ECG-based AI model identified patients with ePAP and predicted their future risk for cardiovascular mortality. This model could serve as a useful clinical test to identify patients with pulmonary hypertension so that treatment can be initiated early to improve their survival prognosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科技hiu个完成签到 ,获得积分10
1秒前
Much完成签到 ,获得积分10
3秒前
爱撒娇的冰安完成签到,获得积分10
6秒前
7秒前
7秒前
WenJun完成签到,获得积分10
8秒前
9秒前
ccc完成签到,获得积分10
10秒前
燕子完成签到,获得积分10
10秒前
GQL发布了新的文献求助10
11秒前
Sevendesu完成签到,获得积分10
11秒前
七里香完成签到 ,获得积分10
14秒前
阿曼尼完成签到 ,获得积分10
14秒前
锈了的xuebxuebi雪碧完成签到,获得积分10
14秒前
lu完成签到,获得积分10
14秒前
14秒前
酷炫凡完成签到 ,获得积分10
15秒前
三七二十一完成签到 ,获得积分10
17秒前
Owen应助GQL采纳,获得10
17秒前
21秒前
多余完成签到,获得积分10
21秒前
32429606完成签到 ,获得积分10
21秒前
丫丫完成签到,获得积分10
22秒前
sugar完成签到,获得积分10
23秒前
Yolanda_Xu完成签到 ,获得积分10
24秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
液晶屏99完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
Hunter完成签到,获得积分10
26秒前
111完成签到 ,获得积分10
26秒前
HtObama完成签到,获得积分10
27秒前
俭朴的世界完成签到 ,获得积分0
28秒前
健壮洋葱完成签到 ,获得积分10
29秒前
李东东完成签到 ,获得积分10
33秒前
666完成签到 ,获得积分10
34秒前
Sofia完成签到 ,获得积分0
34秒前
龙腾岁月完成签到 ,获得积分10
36秒前
踏雾完成签到 ,获得积分10
38秒前
aikeyan完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5677086
求助须知:如何正确求助?哪些是违规求助? 4970454
关于积分的说明 15159354
捐赠科研通 4836760
什么是DOI,文献DOI怎么找? 2591317
邀请新用户注册赠送积分活动 1544792
关于科研通互助平台的介绍 1502815