Artificial Intelligence-Enabled Electrocardiogram Improves the Diagnosis and Prediction of Mortality in Patients With Pulmonary Hypertension

医学 内科学 心脏病学 队列 肺动脉高压 接收机工作特性 肺动脉
作者
Chih‐Min Liu,Edward S.C. Shih,Jhih-Yu Chen,Chih-Han Huang,I‐Chien Wu,Pei‐Fen Chen,Satoshi Higa,Nobumori Yagi,Yu‐Feng Hu,Ming‐Jing Hwang,Shih‐Ann Chen
出处
期刊:JACC: Asia [Elsevier]
卷期号:2 (3): 258-270 被引量:16
标识
DOI:10.1016/j.jacasi.2022.02.008
摘要

Pulmonary hypertension is a disabling and life-threatening cardiovascular disease. Early detection of elevated pulmonary artery pressure (ePAP) is needed for prompt diagnosis and treatment to avoid detrimental consequences of pulmonary hypertension.This study sought to develop an artificial intelligence (AI)-enabled electrocardiogram (ECG) model to identify patients with ePAP and related prognostic implications.From a hospital-based ECG database, the authors extracted the first pairs of ECG and transthoracic echocardiography taken within 2 weeks of each other from 41,097 patients to develop an AI model for detecting ePAP (PAP > 50 mm Hg by transthoracic echocardiography). The model was evaluated on independent data sets, including an external cohort of patients from Japan.Tests of 10-fold cross-validation neural-network deep learning showed that the area under the receiver-operating characteristic curve of the AI model was 0.88 (sensitivity 81.0%; specificity 79.6%) for detecting ePAP. The diagnostic performance was consistent across age, sex, and various comorbidities (diagnostic odds ratio >8 for most factors examined). At 6-year follow-up, the patients predicted by the AI model to have ePAP were independently associated with higher cardiovascular mortality (HR: 3.69). Similar diagnostic performance and prediction for cardiovascular mortality could be replicated in the external cohort.The ECG-based AI model identified patients with ePAP and predicted their future risk for cardiovascular mortality. This model could serve as a useful clinical test to identify patients with pulmonary hypertension so that treatment can be initiated early to improve their survival prognosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
自渡完成签到,获得积分10
2秒前
田様应助可可采纳,获得10
3秒前
小金鱼发布了新的文献求助10
5秒前
yuyu发布了新的文献求助10
6秒前
姚小包子发布了新的文献求助10
6秒前
陈文娜应助Nara2021采纳,获得10
7秒前
hhw完成签到,获得积分10
7秒前
7秒前
传奇3应助Harry采纳,获得10
8秒前
淡淡的山芙完成签到,获得积分10
8秒前
10秒前
10秒前
xixi发布了新的文献求助10
12秒前
13秒前
jjl完成签到 ,获得积分10
14秒前
onlyfive完成签到,获得积分10
15秒前
WMR发布了新的文献求助10
15秒前
Zx_1993应助lemon采纳,获得10
17秒前
咯咚发布了新的文献求助10
18秒前
20秒前
彭于晏应助小帕才采纳,获得30
20秒前
20秒前
领导范儿应助yuyu采纳,获得10
21秒前
can完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
在水一方应助学习采纳,获得10
22秒前
kyrykyry完成签到,获得积分10
22秒前
22秒前
24秒前
liu完成签到 ,获得积分10
25秒前
酷炫过客发布了新的文献求助10
26秒前
27秒前
蔡蔡蔡发布了新的文献求助10
27秒前
李科完成签到,获得积分10
27秒前
Dreamer发布了新的文献求助10
27秒前
28秒前
852应助义气的嘉熙采纳,获得10
28秒前
FiFi完成签到 ,获得积分10
29秒前
liuzhibo发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5527006
求助须知:如何正确求助?哪些是违规求助? 4616908
关于积分的说明 14556326
捐赠科研通 4555526
什么是DOI,文献DOI怎么找? 2496358
邀请新用户注册赠送积分活动 1476672
关于科研通互助平台的介绍 1448212