Artificial Intelligence-Enabled Electrocardiogram Improves the Diagnosis and Prediction of Mortality in Patients With Pulmonary Hypertension

医学 内科学 心脏病学 队列 肺动脉高压 接收机工作特性 肺动脉
作者
Chih‐Min Liu,Edward S.C. Shih,Jhih-Yu Chen,Chih-Han Huang,I‐Chien Wu,Pei‐Fen Chen,Satoshi Higa,Nobumori Yagi,Yu‐Feng Hu,Ming‐Jing Hwang,Shih‐Ann Chen
出处
期刊:JACC: Asia [Elsevier]
卷期号:2 (3): 258-270 被引量:16
标识
DOI:10.1016/j.jacasi.2022.02.008
摘要

Pulmonary hypertension is a disabling and life-threatening cardiovascular disease. Early detection of elevated pulmonary artery pressure (ePAP) is needed for prompt diagnosis and treatment to avoid detrimental consequences of pulmonary hypertension.This study sought to develop an artificial intelligence (AI)-enabled electrocardiogram (ECG) model to identify patients with ePAP and related prognostic implications.From a hospital-based ECG database, the authors extracted the first pairs of ECG and transthoracic echocardiography taken within 2 weeks of each other from 41,097 patients to develop an AI model for detecting ePAP (PAP > 50 mm Hg by transthoracic echocardiography). The model was evaluated on independent data sets, including an external cohort of patients from Japan.Tests of 10-fold cross-validation neural-network deep learning showed that the area under the receiver-operating characteristic curve of the AI model was 0.88 (sensitivity 81.0%; specificity 79.6%) for detecting ePAP. The diagnostic performance was consistent across age, sex, and various comorbidities (diagnostic odds ratio >8 for most factors examined). At 6-year follow-up, the patients predicted by the AI model to have ePAP were independently associated with higher cardiovascular mortality (HR: 3.69). Similar diagnostic performance and prediction for cardiovascular mortality could be replicated in the external cohort.The ECG-based AI model identified patients with ePAP and predicted their future risk for cardiovascular mortality. This model could serve as a useful clinical test to identify patients with pulmonary hypertension so that treatment can be initiated early to improve their survival prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
饼藏发布了新的文献求助10
1秒前
木头马尾发布了新的文献求助10
3秒前
KjLumos发布了新的文献求助10
3秒前
岁岁平安发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
JazzWon完成签到,获得积分10
6秒前
7秒前
桐桐应助聂越采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
柯一一应助科研通管家采纳,获得10
7秒前
7秒前
无花果应助科研通管家采纳,获得10
8秒前
Liufgui应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
常归尘完成签到,获得积分10
8秒前
9秒前
Rondab应助gj2221423采纳,获得10
9秒前
Ava应助张静枝采纳,获得10
10秒前
淡然丹妗发布了新的文献求助10
11秒前
12312发布了新的文献求助30
12秒前
12秒前
LPL完成签到,获得积分10
12秒前
淼鑫完成签到,获得积分10
13秒前
14秒前
joysa发布了新的文献求助10
14秒前
U9A发布了新的文献求助10
14秒前
爆米花应助Felix采纳,获得10
14秒前
Rondab应助liushu采纳,获得10
15秒前
拉长的南松完成签到,获得积分10
17秒前
17秒前
Rondab应助康康采纳,获得10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967699
求助须知:如何正确求助?哪些是违规求助? 3512860
关于积分的说明 11165281
捐赠科研通 3247897
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804550