急性呼吸窘迫综合征
促炎细胞因子
炎症
支气管肺泡灌洗
免疫学
医学
车站3
脂多糖
肿瘤坏死因子α
肺
生物
信号转导
内科学
细胞生物学
作者
Jiping Zhao,Hao Yu,Yudong Liu,Sara A. Gibson,Zhaoqi Yan,Xin Xu,Amit Gaggar,Pui‐Kai Li,Chenglong Li,Shi Wei,Etty Benveniste,Hongwei Qin
出处
期刊:American Journal of Physiology-lung Cellular and Molecular Physiology
[American Physiological Society]
日期:2016-09-17
卷期号:311 (5): L868-L880
被引量:154
标识
DOI:10.1152/ajplung.00281.2016
摘要
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are diseases with high mortality. Macrophages and neutrophils are responsible for inflammatory responses in ALI and ARDS, which are characterized by excessive production of proinflammatory mediators in bronchoalveolar lavage fluid (BALF) and plasma. Aberrant activation of the JAK/STAT pathway is critical for persistent inflammation in many conditions such as infection and autoimmunity. Given the importance of the STAT3 transcription factor in activating macrophages and neutrophils and augmenting inflammation, we investigated the therapeutic potential of inhibiting STAT3 activity using the small-molecule STAT3 inhibitor, LLL12. Our results demonstrate that LPS induces STAT3 activation in macrophages in vitro and in CD45 + CD11b + cells from BALF in the LPS-induced ALI model in vivo. LLL12 treatment inhibits LPS-induced lung inflammation in the ALI model, which is accompanied by suppression of LPS-induced STAT3 activation and an inhibition of macrophage and inflammatory cell infiltration in lung and BALF. LLL12 treatment also suppresses expression of proinflammatory genes including IL-1β, IL-6, TNF-α, iNOS, CCL2, and MHC class II in macrophages and inflammatory cells from BALF and serum as determined by ELISA. Furthermore, hyperactivation of STAT3 in LysMCre-SOCS3 fl/fl mice accelerates the severity of inflammation in the ALI model. Both pre- and post-LPS treatment with LLL12 decrease LPS-induced inflammatory responses in mice with ALI. Importantly, LLL12 treatment attenuates STAT3 phosphorylation in human peripheral blood mononuclear cells induced by plasma from patients with ARDS, which suggests the feasibility of targeting the STAT3 pathway therapeutically for patients with ALI and ARDS.
科研通智能强力驱动
Strongly Powered by AbleSci AI