SECONDARY BIOACTIVE METABOLITE GENE CLUSTERS IDENTIFICATION OF ANTICANDIDA-PRODUCING Streptomyces Sp. GMR22 ISOLATED FROM WANAGAMA FOREST AS REVEALED BY GENOME MINING APPROACH

鉴定(生物学) 次生代谢物 基因组 链霉菌 生物 基因 计算生物学 植物 遗传学 细菌
作者
Camelia Herdini,Sofia Miceli,Bambang Hariwiyanto,Nastiti Wijayanti,Akira Hosoyama,Atsushi Yamazoe,Hideaki Nojiri,Jaka Widada
出处
期刊:INDONESIAN JOURNAL OF PHARMACY 卷期号:28 (1): 26-26 被引量:9
标识
DOI:10.14499/indonesianjpharm28iss1pp26
摘要

Streptomyces are a group of Gram-positive bacteria belonging to the Actinobacteria class, which are among the most important bacteria for producing secondary bioactive metabolites such as antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. Recently, we have isolated the Streptomyces sp. GMR22 from Cajuput rhizospheric soil at Wanagama Forest, Indonesia. GMR22 produced secondary metabolite that inhibited Candida albicans with IC50 of 62,5 μg/mL. The objective of this work was to reveal the novel secondary metabolites from GMR22 by genome mining approach. The antiSMASH 3.0 was used to predict gene clusters that encode the biosynthetic pathways of secondary metabolites in the genome of GMR22, and their core chemical structures. The pylogenomic analysis showed that GMR22 was closely related to Streptomyces bingchenggensis BCW1, as well as to the large genome size (9.5-12.7Mbp) groups of Streptomyces. AntiSMASH 3.0 analysis revealed that the genome of Streptomyces sp. GMR22 harbored at least 63 gene clusters that encode the biosynthetic pathways of secondary metabolites. It was the highest number of gene clusters had been observed among the members of Streptomyces groups, with PKS was predicted as the major groups of the identified gene cluster products. The results suggested that GMR22 could be a strong potential candidate of secondary bioactive metabolites source.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山月鹿发布了新的文献求助10
刚刚
薛访梦完成签到,获得积分10
2秒前
2秒前
阿晨完成签到,获得积分20
2秒前
4秒前
4秒前
粉色完成签到,获得积分10
5秒前
李健的小迷弟应助山月鹿采纳,获得10
5秒前
pluto应助li采纳,获得10
6秒前
6秒前
6秒前
归海紫翠完成签到,获得积分10
7秒前
温暖立诚发布了新的文献求助10
7秒前
7秒前
隐形曼青应助小肥吴采纳,获得10
8秒前
清爽难敌发布了新的文献求助10
9秒前
9秒前
大白菜心完成签到,获得积分10
9秒前
10秒前
gaoww发布了新的文献求助10
11秒前
12秒前
赵世鹏完成签到,获得积分10
12秒前
qll发布了新的文献求助40
14秒前
14秒前
a736991513完成签到,获得积分10
14秒前
mulidexin2021完成签到,获得积分10
15秒前
头发还多发布了新的文献求助10
16秒前
zzzhhh完成签到,获得积分10
16秒前
16秒前
圈圈发布了新的文献求助20
18秒前
Velvet完成签到,获得积分10
18秒前
18秒前
小二郎应助竹斟酒采纳,获得10
19秒前
缓慢如南应助hu采纳,获得10
19秒前
19秒前
搜集达人应助风淡了采纳,获得10
21秒前
kingwill应助longtengfei采纳,获得20
21秒前
科研小白发布了新的文献求助10
22秒前
可爱的函函应助snow采纳,获得30
22秒前
陈大大完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553880
求助须知:如何正确求助?哪些是违规求助? 3129652
关于积分的说明 9383794
捐赠科研通 2828818
什么是DOI,文献DOI怎么找? 1555222
邀请新用户注册赠送积分活动 725923
科研通“疑难数据库(出版商)”最低求助积分说明 715331