Adaptive single-pixel imaging based on guided coefficients

采样(信号处理) 计算机科学 噪音(视频) 图像质量 像素 小波 人工智能 自适应采样 算法 计算机视觉 图像(数学) 数学 统计 蒙特卡罗方法 滤波器(信号处理)
作者
Yaoran Huo,Hongjie He,Fan Chen,Heng‐Ming Tai
出处
期刊:Journal of the Optical Society of America [Optica Publishing Group]
卷期号:34 (1): 39-39 被引量:6
标识
DOI:10.1364/josaa.34.000039
摘要

The existing adaptive single-pixel imaging methods suffer from a waste of sampling resources. The sampling resources are not used adequately for superior localization of significant coefficients and reconstruction. In this paper, an adaptive single-pixel imaging method via the guided coefficients in the Haar wavelet tree is proposed. The goal is to achieve high quality imaging with less sampling resources. The guided coefficients are selected from the unsampled coefficients by a proposed same-scale prediction method based on the sampled coefficients. These guided coefficients are used to localize the significant coefficients with higher resolution belonging to the sampled coefficients and the significant coefficients belonging to the guided coefficients by a proposed guided prediction method. The significant guided coefficients are then used in the composite reconstruction method to reconstruct the image. Performance analysis shows that the proposed method reduces waste of the sampling resources and localizes more significant coefficients. Simulation results demonstrate that the proposed method improves the imaging quality in terms of peak signal-to-noise ratio up to 29.7 dB for the images containing regular and chaotic textures in the noise-free environment. The sampling rate for the same imaging quality can be reduced up to 56%. Under the noisy condition, the proposed method also achieves better imaging quality at a lower sampling rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩的篮球完成签到,获得积分10
1秒前
淡淡奇异果完成签到,获得积分10
2秒前
bc应助苏卿采纳,获得30
3秒前
3秒前
ccccc完成签到,获得积分10
3秒前
Ben发布了新的文献求助10
5秒前
苏源智发布了新的文献求助10
6秒前
小巧问柳完成签到,获得积分10
6秒前
111完成签到 ,获得积分10
8秒前
小马甲应助加油搬砖采纳,获得10
9秒前
11秒前
福福完成签到 ,获得积分10
12秒前
mely完成签到 ,获得积分10
12秒前
专一的访文完成签到,获得积分10
14秒前
橙汁完成签到 ,获得积分10
16秒前
17秒前
Dragon完成签到 ,获得积分10
20秒前
20秒前
FF完成签到 ,获得积分10
20秒前
dzx完成签到 ,获得积分10
21秒前
22秒前
zhaoxiao完成签到 ,获得积分10
24秒前
25秒前
25秒前
潍澤完成签到,获得积分10
26秒前
英俊的铭应助小林采纳,获得10
29秒前
30秒前
十一发布了新的文献求助10
30秒前
31秒前
32秒前
33秒前
uniquearcher完成签到,获得积分10
33秒前
Blessing发布了新的文献求助10
34秒前
科研通AI5应助传统的太清采纳,获得10
34秒前
SciGPT应助科研通管家采纳,获得10
34秒前
FashionBoy应助科研通管家采纳,获得10
34秒前
书生应助科研通管家采纳,获得10
34秒前
NexusExplorer应助科研通管家采纳,获得10
34秒前
情怀应助科研通管家采纳,获得10
34秒前
书生应助科研通管家采纳,获得10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670919
求助须知:如何正确求助?哪些是违规求助? 3227795
关于积分的说明 9777243
捐赠科研通 2937977
什么是DOI,文献DOI怎么找? 1609718
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959