材料科学
微观结构
合金
液化
冶金
断口学
极限抗拉强度
6063铝合金
扫描电子显微镜
压痕硬度
复合材料
热影响区
焊接
拉伸试验
作者
Fuheng Nie,Honggang Dong,Su Chen,Peng Li,Wang Leyou,Zhao Zhou-xing,Xintao Li,Hai Zhang
标识
DOI:10.1016/j.jmst.2016.11.004
摘要
The microstructure and mechanical properties of pulse metal inert-gas (MIG) welded dissimilar joints between 4 mm thick wrought 6061-T6 and cast A356-T6 aluminum alloy plates were investigated. The tensile strength of the joints reached 235 MPa, which is 83% of that of 6061 aluminum alloy, and then decreased with the increase of travel speed while keeping other welding parameters constant. The microstructure, composition and fractography of joints were examined by the optical microscopy (OM), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). Grain boundary liquation and segregation occurred in the partially melted zone (PMZ) on 6061 aluminum alloy side, and brittle Fe-rich phases were observed in partially melted zone on A356 aluminum alloy side. The minimum microhardness appeared in heat-affected zone (HAZ) near A356 aluminum alloy substrate. The samples during tensile test failed mainly in PMZ and HAZ on A356 aluminum alloy side through mixed fracture mode with quasi cleavage and dimples on fracture surface.
科研通智能强力驱动
Strongly Powered by AbleSci AI