锐钛矿
阳离子聚合
空位缺陷
材料科学
掺杂剂
无机化学
锂(药物)
氟化物
离子
兴奋剂
结晶学
化学
催化作用
有机化学
高分子化学
内分泌学
医学
光催化
光电子学
作者
Wei Li,Dario Corradini,Monique Body,Christophe Legein,Mathieu Salanne,Jiwei Ma,Karena W. Chapman,Peter J. Chupas,Anne‐Laure Rollet,C. Julien,Karim Zhagib,Mathieu Duttine,Alain Demourgues,Henri Groult,Damien Dambournet
标识
DOI:10.1021/acs.chemmater.5b01407
摘要
Doping is generally used to tune and enhance the properties of metal oxides. However, their chemical composition cannot be readily modified beyond low dopant amounts without disrupting the crystalline atomic structure. In the case of anatase TiO2, we introduce a new solution-based chemical route allowing the composition to be significantly modified, substituting the divalent O2– anions by monovalent F– and OH– anions resulting in the formation of cationic Ti4+ vacancies (□) whose concentration can be controlled by the reaction temperature. The resulting polyanionic anatase has the general composition Ti1–x–y□x+yO2–4(x+y)F4x(OH)4y, reaching vacancy concentrations of up to 22%, i.e., Ti0.78□0.22O1.12F0.4(OH)0.48. Solid-state 19F NMR spectroscopy reveals that fluoride ions can accommodate up to three different environments, depending on Ti and vacancies (i.e. Ti3-F, Ti2□1-F, and Ti1□2-F), with a preferential location close to vacancies. DFT calculations further confirm the fluoride/vacancy ordering. When its characteristics were evaluated as an electrode for reversible Li-ion storage, the material shows a modified lithium reaction mechanism, which has been rationalized by the occurrence of cationic vacancies acting as additional lithium hosting sites within the anatase framework. Finally, the material shows a fast discharging/charging behavior, compared to TiO2, highlighting the benefits of the structural modifications and paving the way for the design of advanced electrode materials, based on a defect mediated mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI