Automated dimensional quality assurance of full-scale precast concrete elements using laser scanning and BIM

预制混凝土 质量保证 工程类 激光扫描 比例(比率) 计算机科学 建筑工程 结构工程 激光器 运营管理 量子力学 光学 物理 外部质量评估
作者
Minkoo Kim,Qian Wang,Joon-Woo Park,Jack C.P. Cheng,Hoon Sohn,C. C. Chang
出处
期刊:Automation in Construction [Elsevier]
卷期号:72: 102-114 被引量:204
标识
DOI:10.1016/j.autcon.2016.08.035
摘要

This study presents a quality inspection technique for full-scale precast concrete elements using laser scanning and building information modeling (BIM). In today's construction industry, there is an increasing demand for modularization of prefabricated components and control of their dimensional quality during the fabrication and assembly stages. To meet these needs, this study develops a non-contact dimensional quality assurance (DQA) technique that automatically and precisely assesses the key quality criteria of full-scale precast concrete elements. First, a new coordinate transformation algorithm is developed taking into account the scales and complexities of real precast slabs so that the DQA technique can be fully automated. Second, a geometry matching method based on the Principal Component Analysis (PCA), which relates the as-built model constructed from the point cloud data to the corresponding as-designed BIM model, is utilized for precise dimension estimations of the actual precast slab. Third, an edge and corner extraction algorithm is advanced to tackle issues encountered in unexpected conditions, i.e. large incident angles and external steel bars being located near the edge of precast concrete elements. Lastly, a BIM-assisted storage and delivery approach for the obtained DQA data is proposed so that all relevant project stakeholders can share and update DQA data through the manufacture and assembly stages of the project. The applicability of the proposed DQA technique is validated through field tests on two full-scale precast slabs, and the associated implementation issues are discussed. Field test results reveal that the proposed DQA technique can achieve a measurement accuracy of around 3.0 mm for dimension and position estimations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤单的含羞草完成签到 ,获得积分10
1秒前
Muuu发布了新的文献求助10
1秒前
仁爱的乐枫完成签到,获得积分10
2秒前
2秒前
金润完成签到,获得积分10
3秒前
ZZ完成签到,获得积分10
3秒前
AteeqBaloch发布了新的文献求助10
4秒前
PaulLao完成签到,获得积分10
4秒前
4秒前
fleee发布了新的文献求助10
4秒前
4秒前
5秒前
Luyao发布了新的文献求助10
5秒前
海派Hi完成签到 ,获得积分10
5秒前
依依完成签到 ,获得积分10
6秒前
李健的小迷弟应助库外采纳,获得10
6秒前
yi完成签到 ,获得积分10
6秒前
kbj发布了新的文献求助10
6秒前
8秒前
佳言2009完成签到,获得积分10
9秒前
汉堡包应助漂亮的初蓝采纳,获得10
9秒前
hohokuz发布了新的文献求助10
10秒前
莫里完成签到,获得积分10
10秒前
zxz发布了新的文献求助10
10秒前
Luyao完成签到,获得积分10
11秒前
11秒前
11秒前
马甲完成签到,获得积分10
11秒前
科研通AI5应助xdf采纳,获得10
11秒前
周周完成签到,获得积分10
11秒前
Holybot完成签到,获得积分10
11秒前
13秒前
只道寻常完成签到,获得积分10
13秒前
fleee完成签到,获得积分10
13秒前
swsx1317发布了新的文献求助10
13秒前
14秒前
雪白涵山完成签到,获得积分20
14秒前
liao完成签到 ,获得积分10
14秒前
hu970发布了新的文献求助30
14秒前
科研小白发布了新的文献求助20
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762