光催化
掺杂剂
二氧化钛
材料科学
非金属
表面等离子共振
贵金属
氢
兴奋剂
化学工程
纳米技术
无机化学
金属
光化学
纳米颗粒
化学
催化作用
冶金
光电子学
有机化学
工程类
生物化学
标识
DOI:10.1016/j.rser.2017.01.024
摘要
Titanium dioxide TiO2 remains a benchmark photocatalyst with high stability, low toxicity and cost, but it is active only under the UV light. To increase photocatalytic activity, TiO2 is “doped” with metals and nonmetals; nitrogen doped titania N-TiO2 has been extensively investigated since the early 2000s. In the recent decade, an increased attention has been paid to additional dopant aka “codopant” added to N-TiO2 to increase the photocatalytic rate. This focused critical Review covers the research on N-TiO2 codoped with an additional element for the photocatalytic hydrogen generation, namely: (1) mechanistic studies of charge separation aimed to understand and predict photocatalytic activity; (2) nonmetal codoped N-X-TiO2; (3) base metal codoped N-M-TiO2; (4) noble metal codoped N-M-TiO2. Suitability and limitations of experimental methods for characterization of codoped N-TiO2 are discussed. The following mechanisms of photocatalysis with codoped N-TiO2 are reviewed: (a) excitation of TiO2; (b) excitation of N dopant induced states; c) an increased electron-hole (e-h) separation; (d) lowering over potential of hydrogen reduction; (e) excitation of the surface plasmon resonance (SPR) in N-TiO2 codoped with nanoparticles (NPs) of noble metals. Temporal stability of codoped N-TiO2 in H2 generation and transformation pathways of sacrificial electron donors are discussed as well.
科研通智能强力驱动
Strongly Powered by AbleSci AI