已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification of Natural Compounds with Analgesic and Antiinflammatory Properties Using Machine Learning and Molecular Docking Studies

支持向量机 机器学习 自动停靠 随机森林 化学 人工智能 药物发现 虚拟筛选 计算机科学 生物信息学 梯度升压 对接(动物) 公共化学 文字2vec 化学 数据挖掘 医学 基因 生物化学 护理部 嵌入
作者
Mohammad Firoz Khan,Ridwan Bin Rashid,Mohammad A Rashid
出处
期刊:Letters in Drug Design & Discovery [Bentham Science]
卷期号:19 (3): 256-262 被引量:4
标识
DOI:10.2174/1570180818666210728162055
摘要

Background: Natural products have been a rich source of compounds for drug discovery. Usually, compounds obtained from natural sources have little or no side effects, thus searching for new lead compounds from traditionally used plant species is still a rational strategy. Introduction: Natural products serve as a useful repository of compounds for new drugs; however, their use has been decreasing, in part because of technical barriers to screening natural products in highthroughput assays against molecular targets. To address this unmet demand, we have developed and validated a high throughput in silico machine learning screening method to identify potential compounds from natural sources. Methods: In the current study, three machine learning approaches, including Support Vector Machine (SVM), Random Forest (RF) and Gradient Boosting Machine (GBM) have been applied to develop the classification model. The model was generated using the cyclooxygenase-2 (COX-2) inhibitors reported in the ChEMBL database. The developed model was validated by evaluating the accuracy, sensitivity, specificity, Matthews correlation coefficient and Cohen’s kappa statistic of the test set. The molecular docking study was conducted on AutoDock vina and the results were analyzed in PyMOL. Results: The accuracy of the model for SVM, RF and GBM was found to be 75.40 %, 74.97 % and 74.60 %, respectively, which indicates the good performance of the developed model. Further, the model has demonstrated good sensitivity (61.25 % - 68.60 %) and excellent specificity (77.72 %- 81.41 %). Application of the model on the NuBBE database, a repository of natural compounds, led us to identify a natural compound, enhydrin possessing analgesic and anti-inflammatory activities. The ML methods and the molecular docking study suggest that enhydrin likely demonstrates its analgesic and anti-inflammatory actions by inhibiting COX-2. Conclusion: Our developed and validated in silico high throughput ML screening methods may assist in identifying drug-like compounds from natural sources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助STAR采纳,获得10
3秒前
3秒前
4秒前
好运发布了新的文献求助10
6秒前
wth发布了新的文献求助10
8秒前
充电宝应助在明理摸鱼采纳,获得10
8秒前
所所应助大白菜心采纳,获得10
9秒前
wang发布了新的文献求助10
9秒前
FFFFFF完成签到 ,获得积分10
9秒前
10秒前
10秒前
画舫发布了新的文献求助10
14秒前
爆米花应助禁止通行采纳,获得10
14秒前
14秒前
爆米花应助旺仔采纳,获得10
14秒前
17秒前
meidi123发布了新的文献求助10
17秒前
在水一方应助积极雁采纳,获得10
17秒前
18秒前
xyw发布了新的文献求助10
19秒前
20秒前
21秒前
布丁发布了新的文献求助10
25秒前
25秒前
26秒前
28秒前
28秒前
wang完成签到,获得积分10
28秒前
张腾昊发布了新的文献求助10
29秒前
科研通AI40应助123468789521采纳,获得10
30秒前
30秒前
31秒前
youyou糍粑发布了新的文献求助10
32秒前
32秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
小马甲应助科研通管家采纳,获得10
33秒前
orixero应助科研通管家采纳,获得10
33秒前
wth完成签到,获得积分10
34秒前
35秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471262
求助须知:如何正确求助?哪些是违规求助? 3064158
关于积分的说明 9087696
捐赠科研通 2754957
什么是DOI,文献DOI怎么找? 1511673
邀请新用户注册赠送积分活动 698560
科研通“疑难数据库(出版商)”最低求助积分说明 698423