Identifying intercity freight trip ends of heavy trucks from GPS data

卡车 全球定位系统 运输工程 车队管理 计算机科学 航空学 业务 工程类 汽车工程 电信
作者
Yitao Yang,Bin Jia,Xiao-Yong Yan,Jiangtao Li,Zhenzhen Yang,Ziyou Gao
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:157: 102590-102590 被引量:42
标识
DOI:10.1016/j.tre.2021.102590
摘要

• Identify truck stops by capturing GPS trajectory characteristics. • Determine time thresholds by capturing the temporal characteristics of truck activities. • Detect freight-related POI boundaries based on mean-shift algorithm. • The accuracy of our proposed method is significantly improved compared to the benchmark methods. • Analyze the spatiotemporal distribution of intercity freight trips of heavy trucks in China. The intercity freight trips of heavy trucks are basic data for transportation system planning and management. In recent decades, extracting intercity freight trips from GPS data has gradually become the main alternative to traditional surveys. Identifying freight trip ends (origin and destination) is the first task in trip extraction. Although many trip end identification methods have been proposed in previous studies, most of these studies subjectively determined key parameters and ignored the complex characteristics of truck trajectory and freight activities. In this paper, we propose a data-driven trip end identification method based on massive GPS data of heavy trucks in China. First, we capture heavy truck trajectory characteristics under the influence of GPS drift to identify truck stops from GPS data. Second, we analyze the temporal characteristics of truck activities and use freight-related point-of-interest (POI) data and highway network GIS data to identify valid trip ends from truck stops. The results of method validation suggest that the accuracy of our proposed method is significantly improved in comparison with the benchmark methods. We further extract intercity freight trips from the identified trip ends and analyze the spatiotemporal characteristics of intercity freight trips in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mashijie发布了新的文献求助10
刚刚
黄子舟完成签到,获得积分10
1秒前
阳光半仙发布了新的文献求助20
1秒前
DYW完成签到,获得积分20
1秒前
Fanzhixiang发布了新的文献求助10
1秒前
子南发布了新的文献求助10
2秒前
3秒前
diu完成签到,获得积分10
3秒前
忆枫完成签到,获得积分10
4秒前
小葡完成签到,获得积分10
4秒前
4秒前
shanmao完成签到,获得积分10
4秒前
大宝完成签到,获得积分20
7秒前
哈哈完成签到,获得积分20
7秒前
蔡扬鹏完成签到,获得积分10
8秒前
8秒前
Jasper应助lpp_采纳,获得10
9秒前
11秒前
所所应助小马的可爱老婆采纳,获得10
11秒前
13秒前
王粒完成签到,获得积分10
13秒前
14秒前
Kelly1426完成签到,获得积分10
14秒前
14秒前
蓝羽完成签到,获得积分10
14秒前
雪原白鹿发布了新的文献求助10
14秒前
李健的粉丝团团长完成签到,获得积分0
15秒前
科研通AI5应助luogan采纳,获得30
15秒前
阳光半仙完成签到,获得积分20
15秒前
16秒前
16秒前
子南完成签到,获得积分10
16秒前
木头人应助和谐幻柏采纳,获得20
17秒前
zzll发布了新的文献求助10
17秒前
任性松鼠完成签到,获得积分10
17秒前
伍六七发布了新的文献求助10
18秒前
华老师发布了新的文献求助10
18秒前
csm完成签到,获得积分20
19秒前
19秒前
龍fei完成签到,获得积分10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420