Identifying intercity freight trip ends of heavy trucks from GPS data

卡车 全球定位系统 运输工程 车队管理 计算机科学 航空学 业务 工程类 汽车工程 电信
作者
Yitao Yang,Bin Jia,Xiao-Yong Yan,Jiangtao Li,Zhenzhen Yang,Ziyou Gao
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:157: 102590-102590 被引量:42
标识
DOI:10.1016/j.tre.2021.102590
摘要

• Identify truck stops by capturing GPS trajectory characteristics. • Determine time thresholds by capturing the temporal characteristics of truck activities. • Detect freight-related POI boundaries based on mean-shift algorithm. • The accuracy of our proposed method is significantly improved compared to the benchmark methods. • Analyze the spatiotemporal distribution of intercity freight trips of heavy trucks in China. The intercity freight trips of heavy trucks are basic data for transportation system planning and management. In recent decades, extracting intercity freight trips from GPS data has gradually become the main alternative to traditional surveys. Identifying freight trip ends (origin and destination) is the first task in trip extraction. Although many trip end identification methods have been proposed in previous studies, most of these studies subjectively determined key parameters and ignored the complex characteristics of truck trajectory and freight activities. In this paper, we propose a data-driven trip end identification method based on massive GPS data of heavy trucks in China. First, we capture heavy truck trajectory characteristics under the influence of GPS drift to identify truck stops from GPS data. Second, we analyze the temporal characteristics of truck activities and use freight-related point-of-interest (POI) data and highway network GIS data to identify valid trip ends from truck stops. The results of method validation suggest that the accuracy of our proposed method is significantly improved in comparison with the benchmark methods. We further extract intercity freight trips from the identified trip ends and analyze the spatiotemporal characteristics of intercity freight trips in China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Emper完成签到,获得积分10
2秒前
4秒前
Ifree发布了新的文献求助10
4秒前
Goahead完成签到,获得积分10
4秒前
万能图书馆应助积极岂愈采纳,获得10
5秒前
紫罗风韵完成签到,获得积分10
6秒前
7秒前
盛清让完成签到,获得积分10
7秒前
Yam完成签到,获得积分20
7秒前
7秒前
光头大叔完成签到 ,获得积分10
8秒前
8秒前
aa完成签到,获得积分10
8秒前
烟花应助BryanLo采纳,获得10
8秒前
风清扬发布了新的文献求助10
9秒前
跳跃寻绿完成签到,获得积分10
9秒前
大力牌皮揣子完成签到 ,获得积分10
10秒前
Vancy完成签到,获得积分10
10秒前
10秒前
明理涔雨完成签到,获得积分10
11秒前
珂珂完成签到,获得积分10
12秒前
NexusExplorer应助aiya采纳,获得10
12秒前
12秒前
summer夏完成签到,获得积分10
12秒前
12秒前
13秒前
Owen应助小章采纳,获得10
13秒前
丘比特应助小宝ing采纳,获得10
13秒前
李垣锦发布了新的文献求助10
14秒前
14秒前
XSY发布了新的文献求助10
14秒前
15秒前
丁二完成签到,获得积分10
15秒前
积极岂愈完成签到,获得积分10
15秒前
16秒前
16秒前
Ifree完成签到,获得积分10
17秒前
17秒前
CQMZY_2025完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613715
求助须知:如何正确求助?哪些是违规求助? 4698881
关于积分的说明 14899384
捐赠科研通 4737268
什么是DOI,文献DOI怎么找? 2547151
邀请新用户注册赠送积分活动 1511132
关于科研通互助平台的介绍 1473615