Identifying intercity freight trip ends of heavy trucks from GPS data

卡车 全球定位系统 运输工程 车队管理 计算机科学 航空学 业务 工程类 汽车工程 电信
作者
Yitao Yang,Bin Jia,Xiao-Yong Yan,Jiangtao Li,Zhenzhen Yang,Ziyou Gao
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:157: 102590-102590 被引量:42
标识
DOI:10.1016/j.tre.2021.102590
摘要

• Identify truck stops by capturing GPS trajectory characteristics. • Determine time thresholds by capturing the temporal characteristics of truck activities. • Detect freight-related POI boundaries based on mean-shift algorithm. • The accuracy of our proposed method is significantly improved compared to the benchmark methods. • Analyze the spatiotemporal distribution of intercity freight trips of heavy trucks in China. The intercity freight trips of heavy trucks are basic data for transportation system planning and management. In recent decades, extracting intercity freight trips from GPS data has gradually become the main alternative to traditional surveys. Identifying freight trip ends (origin and destination) is the first task in trip extraction. Although many trip end identification methods have been proposed in previous studies, most of these studies subjectively determined key parameters and ignored the complex characteristics of truck trajectory and freight activities. In this paper, we propose a data-driven trip end identification method based on massive GPS data of heavy trucks in China. First, we capture heavy truck trajectory characteristics under the influence of GPS drift to identify truck stops from GPS data. Second, we analyze the temporal characteristics of truck activities and use freight-related point-of-interest (POI) data and highway network GIS data to identify valid trip ends from truck stops. The results of method validation suggest that the accuracy of our proposed method is significantly improved in comparison with the benchmark methods. We further extract intercity freight trips from the identified trip ends and analyze the spatiotemporal characteristics of intercity freight trips in China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夏柯完成签到,获得积分10
刚刚
刚刚
XX完成签到,获得积分10
刚刚
刚刚
bkagyin应助满意语芙采纳,获得10
刚刚
黑猫乾杯应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得30
1秒前
Mic应助科研通管家采纳,获得10
1秒前
做科研的小施同学完成签到,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得30
1秒前
小巧亦竹发布了新的文献求助10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得30
1秒前
小单发布了新的文献求助50
1秒前
王丽娟应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得10
1秒前
1秒前
妩媚的海应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
smottom应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
星月应助科研通管家采纳,获得20
1秒前
黑猫乾杯应助科研通管家采纳,获得10
2秒前
科研通AI6应助Magic1987采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
王丽娟应助科研通管家采纳,获得10
2秒前
2秒前
Mic应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901