生化工程
纳米技术
竞争对手分析
合理设计
自然(考古学)
人工酶
催化作用
计算机科学
化学
材料科学
工程类
生物
生物化学
业务
古生物学
营销
作者
Ruofei Zhang,Xiyun Yan,Kelong Fan
出处
期刊:Accounts of materials research
[American Chemical Society]
日期:2021-06-24
卷期号:2 (7): 534-547
被引量:409
标识
DOI:10.1021/accountsmr.1c00074
摘要
ConspectusNanozymes, nanomaterials with enzyme-like activities with high structural stability, adjustable catalytic activity, functional diversity, recyclability, and feasibility in large-scale preparation, have become a hot spot in the field of artificial enzymes in recent years and are expected to become potential surrogates and competitors for natural enzymes in practical applications. With the development of in-depth research and a wide range of application requirements, creating nanozymes with catalytic performance comparable to or even surpassing that of natural enzymes has been the key research topic in this field. Most of the nanozymes reported in the past were obtained based on random synthesis and screening, for which the catalytic efficiency is far inferior to that of natural enzymes. Natural enzymes that have evolved over hundreds of millions of years have developed a lot of high-efficiency catalysis know-how hidden in their structural features. To create highly active nanozymes, we assumed that there is a general structure–activity relationship between nanozymes and natural enzymes and proposed the nanozyme optimization strategy by grafting the catalytic principles of natural enzymes into the rational design of nanozymes. On the basis of this bioinspired strategy, a series of nanozymes that exhibit similar catalytic activities that are closer to or even beyond those of natural enzymes have been successfully synthesized. By now, rationally designed high-activity bioinspired nanozymes have become a hot topic in the current research on nanozymes.In this Account, we focus on recent representative research progress in the systemic design and construction of bioinspired nanozymes and are devoted to introducing strategic concepts in the bioinspired optimization of nanozymes. We show that the de novo design of nanozymes by simulating the amino acid microenvironment and using metal-free architecture and the coordination structure of metal active sites in natural enzymes is an effective strategy for significantly improving the catalytic performance of nanozymes. A future perspective of the challenges and countermeasures of bioinspired nanozymes is proposed on the basis of these achievements. We hope that the biologically inspired perception will arouse widespread interest in fundamental research and practical applications as well as provide inspiration for the rational design of nanozymes.
科研通智能强力驱动
Strongly Powered by AbleSci AI