重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Selection of wearable sensor measurements for monitoring and managing entry-level construction worker fatigue: a logistic regression approach

活动记录 可穿戴计算机 逻辑回归 可穿戴技术 计算机科学 标准差 工程类 统计 医学 机器学习 数学 嵌入式系统 昼夜节律 内分泌学
作者
Wonil Lee,Ken‐Yu Lin,Peta Wyeth,Edmund Seto
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
卷期号:29 (8): 2905-2923 被引量:9
标识
DOI:10.1108/ecam-02-2021-0106
摘要

Purpose The identification of fatigue status and early intervention to mitigate fatigue can reduce the risk of workplace injuries. Off-the-shelf wearable sensors capable of assessing multiple parameters are available. However, using numerous variables in the fatigue prediction model can elicit data issues. This study aimed at identifying the most relevant variables for measuring occupational fatigue among entry-level construction workers by using common wearable sensor technologies, such as electrocardiogram and actigraphy sensors. Design/methodology/approach Twenty-two individuals were assigned different task workloads in repeated sessions. Stepwise logistic regression was used to identify the most parsimonious fatigue prediction model. Heart rate variability measurements, standard deviation of NN intervals and power in the low-frequency range (LF) were considered for fatigue prediction. Fast Fourier transform and autoregressive (AR) analysis were employed as frequency domain analysis methods. Findings The log-transformed LF obtained using AR analysis is preferred for daily fatigue management, whereas the standard deviation of normal-to-normal NN is useful in weekly fatigue management. Research limitations/implications This study was conducted with entry-level construction workers who are involved in manual material handling activities. The findings of this study are applicable to this group. Originality/value This is the first study to investigate all major measures obtainable through electrocardiogram and actigraphy among current mainstream wearables for monitoring occupational fatigue in the construction industry. It contributes knowledge on the use of wearable technology for managing occupational fatigue among entry-level construction workers engaged in material handling activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助咕噜采纳,获得10
刚刚
mingjing发布了新的文献求助10
刚刚
炸骐发布了新的文献求助10
1秒前
1秒前
zy完成签到,获得积分10
2秒前
冯珂完成签到 ,获得积分10
2秒前
2秒前
小鹿5460发布了新的文献求助10
2秒前
luo完成签到,获得积分10
2秒前
顾矜应助无隅采纳,获得10
3秒前
美丽佩奇完成签到 ,获得积分10
4秒前
贺六浑发布了新的文献求助30
4秒前
尧肙完成签到,获得积分20
4秒前
季忆发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
上官若男应助坦率灵槐采纳,获得10
6秒前
6秒前
wanghao4799发布了新的文献求助10
6秒前
7秒前
yuzu完成签到 ,获得积分10
8秒前
9秒前
9秒前
风轩轩发布了新的文献求助10
9秒前
幽默尔蓝发布了新的文献求助10
9秒前
9秒前
然463完成签到 ,获得积分10
9秒前
11秒前
小陈发布了新的文献求助50
11秒前
11秒前
李健应助乐观香寒采纳,获得10
11秒前
12秒前
bkagyin应助xiaostou采纳,获得10
12秒前
小鹿5460完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
LiuZheng发布了新的文献求助10
13秒前
共享精神应助浮尘采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466510
求助须知:如何正确求助?哪些是违规求助? 4570363
关于积分的说明 14324919
捐赠科研通 4496890
什么是DOI,文献DOI怎么找? 2463583
邀请新用户注册赠送积分活动 1452557
关于科研通互助平台的介绍 1427545