Selection of wearable sensor measurements for monitoring and managing entry-level construction worker fatigue: a logistic regression approach

活动记录 可穿戴计算机 逻辑回归 可穿戴技术 计算机科学 标准差 工程类 统计 医学 机器学习 数学 嵌入式系统 昼夜节律 内分泌学
作者
Wonil Lee,Ken‐Yu Lin,Peta Wyeth,Edmund Seto
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
卷期号:29 (8): 2905-2923 被引量:9
标识
DOI:10.1108/ecam-02-2021-0106
摘要

Purpose The identification of fatigue status and early intervention to mitigate fatigue can reduce the risk of workplace injuries. Off-the-shelf wearable sensors capable of assessing multiple parameters are available. However, using numerous variables in the fatigue prediction model can elicit data issues. This study aimed at identifying the most relevant variables for measuring occupational fatigue among entry-level construction workers by using common wearable sensor technologies, such as electrocardiogram and actigraphy sensors. Design/methodology/approach Twenty-two individuals were assigned different task workloads in repeated sessions. Stepwise logistic regression was used to identify the most parsimonious fatigue prediction model. Heart rate variability measurements, standard deviation of NN intervals and power in the low-frequency range (LF) were considered for fatigue prediction. Fast Fourier transform and autoregressive (AR) analysis were employed as frequency domain analysis methods. Findings The log-transformed LF obtained using AR analysis is preferred for daily fatigue management, whereas the standard deviation of normal-to-normal NN is useful in weekly fatigue management. Research limitations/implications This study was conducted with entry-level construction workers who are involved in manual material handling activities. The findings of this study are applicable to this group. Originality/value This is the first study to investigate all major measures obtainable through electrocardiogram and actigraphy among current mainstream wearables for monitoring occupational fatigue in the construction industry. It contributes knowledge on the use of wearable technology for managing occupational fatigue among entry-level construction workers engaged in material handling activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后妖妖完成签到,获得积分10
1秒前
1秒前
2秒前
SciGPT应助XXX采纳,获得10
4秒前
碗碗发布了新的文献求助10
4秒前
5秒前
hjl发布了新的文献求助10
5秒前
5秒前
7秒前
完美世界应助阳光晓蓝采纳,获得10
7秒前
嘻嘻哈哈完成签到 ,获得积分10
7秒前
tkp发布了新的文献求助10
8秒前
DrKorla完成签到,获得积分10
10秒前
充电宝应助jinzhen采纳,获得10
14秒前
传奇3应助Khr1stINK采纳,获得10
18秒前
18秒前
19秒前
19秒前
星辰大海应助wenlin采纳,获得10
20秒前
20秒前
20秒前
Sunnie完成签到,获得积分10
21秒前
阳光晓蓝发布了新的文献求助10
22秒前
22秒前
tkp完成签到,获得积分10
23秒前
黄富荣完成签到 ,获得积分10
24秒前
JINYUBAO发布了新的文献求助10
24秒前
jinzhen发布了新的文献求助10
25秒前
zzc发布了新的文献求助10
26秒前
Ting发布了新的文献求助10
26秒前
27秒前
28秒前
子车听白完成签到,获得积分10
29秒前
wangfang完成签到,获得积分10
29秒前
30秒前
活力的彩虹完成签到,获得积分10
31秒前
Ava应助Allen采纳,获得10
32秒前
wangfang发布了新的文献求助10
32秒前
32秒前
芯梓12完成签到 ,获得积分10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313559
求助须知:如何正确求助?哪些是违规求助? 2945879
关于积分的说明 8527489
捐赠科研通 2621538
什么是DOI,文献DOI怎么找? 1433778
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637