Selection of wearable sensor measurements for monitoring and managing entry-level construction worker fatigue: a logistic regression approach

活动记录 可穿戴计算机 逻辑回归 可穿戴技术 计算机科学 标准差 工程类 统计 医学 机器学习 数学 嵌入式系统 昼夜节律 内分泌学
作者
Wonil Lee,Ken‐Yu Lin,Peta Wyeth,Edmund Seto
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
卷期号:29 (8): 2905-2923 被引量:9
标识
DOI:10.1108/ecam-02-2021-0106
摘要

Purpose The identification of fatigue status and early intervention to mitigate fatigue can reduce the risk of workplace injuries. Off-the-shelf wearable sensors capable of assessing multiple parameters are available. However, using numerous variables in the fatigue prediction model can elicit data issues. This study aimed at identifying the most relevant variables for measuring occupational fatigue among entry-level construction workers by using common wearable sensor technologies, such as electrocardiogram and actigraphy sensors. Design/methodology/approach Twenty-two individuals were assigned different task workloads in repeated sessions. Stepwise logistic regression was used to identify the most parsimonious fatigue prediction model. Heart rate variability measurements, standard deviation of NN intervals and power in the low-frequency range (LF) were considered for fatigue prediction. Fast Fourier transform and autoregressive (AR) analysis were employed as frequency domain analysis methods. Findings The log-transformed LF obtained using AR analysis is preferred for daily fatigue management, whereas the standard deviation of normal-to-normal NN is useful in weekly fatigue management. Research limitations/implications This study was conducted with entry-level construction workers who are involved in manual material handling activities. The findings of this study are applicable to this group. Originality/value This is the first study to investigate all major measures obtainable through electrocardiogram and actigraphy among current mainstream wearables for monitoring occupational fatigue in the construction industry. It contributes knowledge on the use of wearable technology for managing occupational fatigue among entry-level construction workers engaged in material handling activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xiaoxiao应助sunyexuan采纳,获得10
1秒前
2秒前
3秒前
淼淼之锋完成签到 ,获得积分10
3秒前
赢赢完成签到 ,获得积分10
3秒前
4秒前
5秒前
科目三应助落落采纳,获得10
7秒前
67发布了新的文献求助10
7秒前
7秒前
溜溜完成签到,获得积分10
7秒前
xixi完成签到 ,获得积分10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
撒上咖啡应助科研通管家采纳,获得10
8秒前
RC_Wang应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
琪琪扬扬发布了新的文献求助10
8秒前
sutharsons应助科研通管家采纳,获得30
8秒前
orixero应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
清爽老九应助科研通管家采纳,获得20
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
hui发布了新的文献求助30
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
10秒前
迟大猫应助若狂采纳,获得10
10秒前
11111发布了新的文献求助30
10秒前
溜溜发布了新的文献求助10
11秒前
12秒前
wanli445完成签到,获得积分10
13秒前
科研通AI2S应助satchzhao采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808