Construction of Comprehensive Flavonoid Analysis Tool by Using UV‐vis Spectra Library, In‐house Database, and Chemometrics

化学计量学 类黄酮 化学 鉴定(生物学) 色谱法 质谱法 数据库 分辨率(逻辑) 过程(计算) 计算机科学 人工智能 植物 生物 有机化学 操作系统 抗氧化剂
作者
Mengliang Zhang,Jianghao Sun,James M. Harnly,Joseph M. Betz,Pei-Jer Chen
出处
期刊:The FASEB Journal [Wiley]
卷期号:31 (S1)
标识
DOI:10.1096/fasebj.31.1_supplement.974.22
摘要

Liquid Chromatography and mass spectrometry methods, especially ultra-high performance liquid chromatography coupled with high resolution accurate mass-mass spectrometry (UHPLC-HRAM-MS), have become the best methods for flavonoid identification and quantification. However, processing acquired UHPLC-HRAM-MS data for flavonoid analysis is very challenging and highly expertise-dependent because of the complexity of the physical and chemical properties of the flavonoids. An expert data analysis program, FlavonQ, has been developed to facilitate this process. The program first categorizes the flavonoids using a chemometric model based on the UV-Vis spectra library compiled for 146 flavonoid reference standards. A novel stepwise classification strategy is used that provides data representation in each step as optimized by a projected distance resolution (PDR) method. The stepwise classification strategy significantly improves the performance of the classifiers which results in more accurate and reliable classification results. An in-house flavonoid database which contains 5686 previously reported flavonoids is used for identification of flavonoids. FlavonQ was validated by analyzing data from samples with spiked flavonoid mixed standards and plant samples including blueberry, mizuna, purple mustard, red cabbage, and red mustard green extract. Accuracies for identification for all samples were above 88%. FlavonQ greatly facilitates the identification and quantitation of flavonoids from UHPLC-HRAM-MS data. The process is automated, saving tremendous resources, and allowing less-experienced people to perform data analysis on flavonoids with reasonable results. Support or Funding InformationThis research is supported by the Agricultural Research Service of the U.S. Department of Agriculture, an Interagency Agreement with the Office of Dietary Supplements at the National Institutes of Health (Y01 OD001298-01). The John A. Milner Fellowship program by USDA Beltsville Human Nutrition Research Center and the NIH Office of Dietary Supplements is acknowledged for the support to Dr. Mengliang Zhang. We thank to Dr. Peter de B. Harrington for providing his codes on chemometric models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐的语雪完成签到,获得积分10
1秒前
1秒前
朱z完成签到,获得积分10
2秒前
zj完成签到,获得积分20
3秒前
三伏天发布了新的文献求助10
3秒前
Youngen完成签到,获得积分10
4秒前
CipherSage应助tjfwg采纳,获得10
5秒前
实验室的亡灵完成签到,获得积分10
5秒前
hotmoneysniper完成签到,获得积分20
6秒前
秋向秋发布了新的文献求助10
7秒前
漂亮送终发布了新的文献求助20
7秒前
十三月完成签到,获得积分10
7秒前
逢春完成签到,获得积分10
7秒前
xczhu完成签到,获得积分10
7秒前
宁宁完成签到,获得积分20
8秒前
luluyuan2010完成签到,获得积分10
8秒前
9秒前
直率铁身完成签到,获得积分10
9秒前
饭团完成签到 ,获得积分10
9秒前
现代的烤鸡完成签到,获得积分10
10秒前
Epiphany完成签到,获得积分10
10秒前
rendong4009完成签到,获得积分10
10秒前
务实的秋白完成签到,获得积分20
11秒前
八点必起完成签到,获得积分10
11秒前
第七兵团司令完成签到,获得积分10
11秒前
三伏天完成签到,获得积分10
12秒前
BOB发布了新的文献求助10
13秒前
冰儿菲菲完成签到,获得积分10
13秒前
13秒前
云游归尘完成签到 ,获得积分10
15秒前
南宫清涟完成签到,获得积分10
16秒前
xiaxia42完成签到 ,获得积分10
16秒前
乐观的海发布了新的文献求助10
17秒前
hehuan0520完成签到,获得积分10
18秒前
jeronimo完成签到,获得积分10
18秒前
jhcraul完成签到,获得积分0
18秒前
活力亦瑶完成签到,获得积分10
19秒前
21秒前
21秒前
小_n完成签到,获得积分10
22秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3347137
求助须知:如何正确求助?哪些是违规求助? 2973555
关于积分的说明 8659945
捐赠科研通 2654156
什么是DOI,文献DOI怎么找? 1453482
科研通“疑难数据库(出版商)”最低求助积分说明 672930
邀请新用户注册赠送积分活动 662998