Construction of Comprehensive Flavonoid Analysis Tool by Using UV‐vis Spectra Library, In‐house Database, and Chemometrics

化学计量学 类黄酮 化学 鉴定(生物学) 色谱法 质谱法 数据库 分辨率(逻辑) 过程(计算) 计算机科学 人工智能 植物 生物 有机化学 抗氧化剂 操作系统
作者
Mengliang Zhang,Jianghao Sun,James M. Harnly,Joseph M. Betz,Pei-Jer Chen
出处
期刊:The FASEB Journal [Wiley]
卷期号:31 (S1)
标识
DOI:10.1096/fasebj.31.1_supplement.974.22
摘要

Liquid Chromatography and mass spectrometry methods, especially ultra-high performance liquid chromatography coupled with high resolution accurate mass-mass spectrometry (UHPLC-HRAM-MS), have become the best methods for flavonoid identification and quantification. However, processing acquired UHPLC-HRAM-MS data for flavonoid analysis is very challenging and highly expertise-dependent because of the complexity of the physical and chemical properties of the flavonoids. An expert data analysis program, FlavonQ, has been developed to facilitate this process. The program first categorizes the flavonoids using a chemometric model based on the UV-Vis spectra library compiled for 146 flavonoid reference standards. A novel stepwise classification strategy is used that provides data representation in each step as optimized by a projected distance resolution (PDR) method. The stepwise classification strategy significantly improves the performance of the classifiers which results in more accurate and reliable classification results. An in-house flavonoid database which contains 5686 previously reported flavonoids is used for identification of flavonoids. FlavonQ was validated by analyzing data from samples with spiked flavonoid mixed standards and plant samples including blueberry, mizuna, purple mustard, red cabbage, and red mustard green extract. Accuracies for identification for all samples were above 88%. FlavonQ greatly facilitates the identification and quantitation of flavonoids from UHPLC-HRAM-MS data. The process is automated, saving tremendous resources, and allowing less-experienced people to perform data analysis on flavonoids with reasonable results. Support or Funding InformationThis research is supported by the Agricultural Research Service of the U.S. Department of Agriculture, an Interagency Agreement with the Office of Dietary Supplements at the National Institutes of Health (Y01 OD001298-01). The John A. Milner Fellowship program by USDA Beltsville Human Nutrition Research Center and the NIH Office of Dietary Supplements is acknowledged for the support to Dr. Mengliang Zhang. We thank to Dr. Peter de B. Harrington for providing his codes on chemometric models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰的舞仙完成签到,获得积分10
1秒前
1秒前
李海平完成签到 ,获得积分10
1秒前
OYY完成签到 ,获得积分10
1秒前
顺心醉蝶完成签到 ,获得积分10
4秒前
chenkj完成签到,获得积分10
7秒前
ikun完成签到,获得积分10
7秒前
EricSai完成签到,获得积分10
7秒前
caicai完成签到,获得积分10
9秒前
gg完成签到,获得积分10
10秒前
亮晶晶完成签到 ,获得积分10
11秒前
阿白完成签到,获得积分10
12秒前
羊白玉完成签到 ,获得积分10
13秒前
小墨墨完成签到 ,获得积分10
13秒前
16秒前
江蓠完成签到,获得积分10
16秒前
xionghaizi完成签到,获得积分10
16秒前
一氧化二氢完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
奔铂儿钯完成签到,获得积分10
18秒前
看文献搞科研完成签到,获得积分10
18秒前
姚姚完成签到,获得积分10
19秒前
赟yun完成签到,获得积分0
20秒前
典雅的语海完成签到,获得积分10
21秒前
平淡的寄风完成签到,获得积分10
22秒前
339564965完成签到,获得积分10
23秒前
24秒前
ccc完成签到,获得积分10
24秒前
wangbw完成签到,获得积分10
24秒前
只想顺利毕业的科研狗完成签到,获得积分10
26秒前
兜兜揣满糖完成签到 ,获得积分10
26秒前
研友_ZA2B68完成签到,获得积分0
27秒前
xueshidaheng完成签到,获得积分0
27秒前
28秒前
kyhappy_2002完成签到,获得积分10
29秒前
舒心的久完成签到 ,获得积分10
29秒前
von完成签到,获得积分10
29秒前
yy爱科研完成签到,获得积分10
29秒前
30秒前
韭菜盒子完成签到,获得积分20
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953529
求助须知:如何正确求助?哪些是违规求助? 3498988
关于积分的说明 11093588
捐赠科研通 3229618
什么是DOI,文献DOI怎么找? 1785661
邀请新用户注册赠送积分活动 869464
科研通“疑难数据库(出版商)”最低求助积分说明 801470