Construction of Comprehensive Flavonoid Analysis Tool by Using UV‐vis Spectra Library, In‐house Database, and Chemometrics

化学计量学 类黄酮 化学 鉴定(生物学) 色谱法 质谱法 数据库 分辨率(逻辑) 过程(计算) 计算机科学 人工智能 植物 生物 有机化学 抗氧化剂 操作系统
作者
Mengliang Zhang,Jianghao Sun,James M. Harnly,Joseph M. Betz,Pei-Jer Chen
出处
期刊:The FASEB Journal [Wiley]
卷期号:31 (S1)
标识
DOI:10.1096/fasebj.31.1_supplement.974.22
摘要

Liquid Chromatography and mass spectrometry methods, especially ultra-high performance liquid chromatography coupled with high resolution accurate mass-mass spectrometry (UHPLC-HRAM-MS), have become the best methods for flavonoid identification and quantification. However, processing acquired UHPLC-HRAM-MS data for flavonoid analysis is very challenging and highly expertise-dependent because of the complexity of the physical and chemical properties of the flavonoids. An expert data analysis program, FlavonQ, has been developed to facilitate this process. The program first categorizes the flavonoids using a chemometric model based on the UV-Vis spectra library compiled for 146 flavonoid reference standards. A novel stepwise classification strategy is used that provides data representation in each step as optimized by a projected distance resolution (PDR) method. The stepwise classification strategy significantly improves the performance of the classifiers which results in more accurate and reliable classification results. An in-house flavonoid database which contains 5686 previously reported flavonoids is used for identification of flavonoids. FlavonQ was validated by analyzing data from samples with spiked flavonoid mixed standards and plant samples including blueberry, mizuna, purple mustard, red cabbage, and red mustard green extract. Accuracies for identification for all samples were above 88%. FlavonQ greatly facilitates the identification and quantitation of flavonoids from UHPLC-HRAM-MS data. The process is automated, saving tremendous resources, and allowing less-experienced people to perform data analysis on flavonoids with reasonable results. Support or Funding InformationThis research is supported by the Agricultural Research Service of the U.S. Department of Agriculture, an Interagency Agreement with the Office of Dietary Supplements at the National Institutes of Health (Y01 OD001298-01). The John A. Milner Fellowship program by USDA Beltsville Human Nutrition Research Center and the NIH Office of Dietary Supplements is acknowledged for the support to Dr. Mengliang Zhang. We thank to Dr. Peter de B. Harrington for providing his codes on chemometric models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张六六完成签到,获得积分10
2秒前
2秒前
Lee完成签到 ,获得积分10
4秒前
蓝天应助niko采纳,获得10
5秒前
愉快天亦发布了新的文献求助10
6秒前
zhanlan发布了新的文献求助10
7秒前
Aries完成签到,获得积分20
7秒前
勤奋橘子完成签到,获得积分10
8秒前
SciGPT应助leiyuekai采纳,获得10
8秒前
9秒前
缓慢凤凰发布了新的文献求助10
9秒前
烟花应助香菜头采纳,获得30
11秒前
量子星尘发布了新的文献求助10
12秒前
wanci应助zzh采纳,获得10
13秒前
14秒前
天天快乐应助落日出逃采纳,获得10
15秒前
赵永刚完成签到,获得积分10
15秒前
Aries关注了科研通微信公众号
15秒前
阿杰完成签到,获得积分10
16秒前
柒染完成签到 ,获得积分10
18秒前
小天完成签到 ,获得积分10
19秒前
20秒前
CR7应助李嘉图采纳,获得20
20秒前
我是老大应助曹博盛采纳,获得30
21秒前
小天关注了科研通微信公众号
22秒前
hao发布了新的文献求助10
23秒前
huangman完成签到,获得积分10
25秒前
26秒前
wz完成签到,获得积分10
28秒前
之组长了完成签到 ,获得积分10
28秒前
29秒前
苏世完成签到,获得积分10
30秒前
30秒前
光亮冬寒发布了新的文献求助10
30秒前
小高完成签到 ,获得积分10
31秒前
suozi发布了新的文献求助30
31秒前
32秒前
曹博盛发布了新的文献求助30
36秒前
别当真发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633958
求助须知:如何正确求助?哪些是违规求助? 4729818
关于积分的说明 14987080
捐赠科研通 4791757
什么是DOI,文献DOI怎么找? 2559034
邀请新用户注册赠送积分活动 1519478
关于科研通互助平台的介绍 1479707