Construction of Comprehensive Flavonoid Analysis Tool by Using UV‐vis Spectra Library, In‐house Database, and Chemometrics

化学计量学 类黄酮 化学 鉴定(生物学) 色谱法 质谱法 数据库 分辨率(逻辑) 过程(计算) 计算机科学 人工智能 植物 生物 有机化学 抗氧化剂 操作系统
作者
Mengliang Zhang,Jianghao Sun,James M. Harnly,Joseph M. Betz,Pei-Jer Chen
出处
期刊:The FASEB Journal [Wiley]
卷期号:31 (S1)
标识
DOI:10.1096/fasebj.31.1_supplement.974.22
摘要

Liquid Chromatography and mass spectrometry methods, especially ultra-high performance liquid chromatography coupled with high resolution accurate mass-mass spectrometry (UHPLC-HRAM-MS), have become the best methods for flavonoid identification and quantification. However, processing acquired UHPLC-HRAM-MS data for flavonoid analysis is very challenging and highly expertise-dependent because of the complexity of the physical and chemical properties of the flavonoids. An expert data analysis program, FlavonQ, has been developed to facilitate this process. The program first categorizes the flavonoids using a chemometric model based on the UV-Vis spectra library compiled for 146 flavonoid reference standards. A novel stepwise classification strategy is used that provides data representation in each step as optimized by a projected distance resolution (PDR) method. The stepwise classification strategy significantly improves the performance of the classifiers which results in more accurate and reliable classification results. An in-house flavonoid database which contains 5686 previously reported flavonoids is used for identification of flavonoids. FlavonQ was validated by analyzing data from samples with spiked flavonoid mixed standards and plant samples including blueberry, mizuna, purple mustard, red cabbage, and red mustard green extract. Accuracies for identification for all samples were above 88%. FlavonQ greatly facilitates the identification and quantitation of flavonoids from UHPLC-HRAM-MS data. The process is automated, saving tremendous resources, and allowing less-experienced people to perform data analysis on flavonoids with reasonable results. Support or Funding InformationThis research is supported by the Agricultural Research Service of the U.S. Department of Agriculture, an Interagency Agreement with the Office of Dietary Supplements at the National Institutes of Health (Y01 OD001298-01). The John A. Milner Fellowship program by USDA Beltsville Human Nutrition Research Center and the NIH Office of Dietary Supplements is acknowledged for the support to Dr. Mengliang Zhang. We thank to Dr. Peter de B. Harrington for providing his codes on chemometric models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
innate发布了新的文献求助10
刚刚
马艺帆发布了新的文献求助10
刚刚
爱听歌澜完成签到,获得积分20
刚刚
负数完成签到,获得积分10
刚刚
liangliu完成签到 ,获得积分10
1秒前
鼠鼠完成签到 ,获得积分10
1秒前
真三完成签到,获得积分10
1秒前
戴鹿角王冠的拉斯特完成签到,获得积分10
1秒前
nikki完成签到,获得积分10
1秒前
1秒前
所所应助马儿饿了要吃草采纳,获得10
2秒前
月亮moon完成签到,获得积分10
2秒前
执着的导师完成签到,获得积分10
2秒前
river完成签到,获得积分10
2秒前
渠建武完成签到 ,获得积分10
3秒前
文静醉易完成签到,获得积分10
3秒前
华仔应助hxpxp采纳,获得10
3秒前
恰逢发布了新的文献求助10
3秒前
爱听歌安彤完成签到,获得积分20
3秒前
高震博完成签到 ,获得积分10
4秒前
huijuan完成签到,获得积分10
4秒前
wh222222发布了新的文献求助10
5秒前
小轩窗zst完成签到,获得积分10
5秒前
5秒前
Yanis完成签到,获得积分10
6秒前
专注成风完成签到,获得积分10
6秒前
爱听歌澜发布了新的文献求助10
6秒前
7秒前
7秒前
正直的彩虹完成签到,获得积分10
8秒前
小董发布了新的文献求助10
8秒前
机会完成签到,获得积分10
8秒前
阿修罗完成签到,获得积分10
8秒前
默默的藏今完成签到,获得积分10
9秒前
9秒前
9秒前
叶子完成签到 ,获得积分10
9秒前
zhangkx23完成签到,获得积分10
9秒前
10秒前
若冰完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568487
求助须知:如何正确求助?哪些是违规求助? 4653122
关于积分的说明 14704067
捐赠科研通 4594924
什么是DOI,文献DOI怎么找? 2521391
邀请新用户注册赠送积分活动 1492973
关于科研通互助平台的介绍 1463792