亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Construction of Comprehensive Flavonoid Analysis Tool by Using UV‐vis Spectra Library, In‐house Database, and Chemometrics

化学计量学 类黄酮 化学 鉴定(生物学) 色谱法 质谱法 数据库 分辨率(逻辑) 过程(计算) 计算机科学 人工智能 植物 生物 有机化学 抗氧化剂 操作系统
作者
Mengliang Zhang,Jianghao Sun,James M. Harnly,Joseph M. Betz,Pei-Jer Chen
出处
期刊:The FASEB Journal [Wiley]
卷期号:31 (S1)
标识
DOI:10.1096/fasebj.31.1_supplement.974.22
摘要

Liquid Chromatography and mass spectrometry methods, especially ultra-high performance liquid chromatography coupled with high resolution accurate mass-mass spectrometry (UHPLC-HRAM-MS), have become the best methods for flavonoid identification and quantification. However, processing acquired UHPLC-HRAM-MS data for flavonoid analysis is very challenging and highly expertise-dependent because of the complexity of the physical and chemical properties of the flavonoids. An expert data analysis program, FlavonQ, has been developed to facilitate this process. The program first categorizes the flavonoids using a chemometric model based on the UV-Vis spectra library compiled for 146 flavonoid reference standards. A novel stepwise classification strategy is used that provides data representation in each step as optimized by a projected distance resolution (PDR) method. The stepwise classification strategy significantly improves the performance of the classifiers which results in more accurate and reliable classification results. An in-house flavonoid database which contains 5686 previously reported flavonoids is used for identification of flavonoids. FlavonQ was validated by analyzing data from samples with spiked flavonoid mixed standards and plant samples including blueberry, mizuna, purple mustard, red cabbage, and red mustard green extract. Accuracies for identification for all samples were above 88%. FlavonQ greatly facilitates the identification and quantitation of flavonoids from UHPLC-HRAM-MS data. The process is automated, saving tremendous resources, and allowing less-experienced people to perform data analysis on flavonoids with reasonable results. Support or Funding InformationThis research is supported by the Agricultural Research Service of the U.S. Department of Agriculture, an Interagency Agreement with the Office of Dietary Supplements at the National Institutes of Health (Y01 OD001298-01). The John A. Milner Fellowship program by USDA Beltsville Human Nutrition Research Center and the NIH Office of Dietary Supplements is acknowledged for the support to Dr. Mengliang Zhang. We thank to Dr. Peter de B. Harrington for providing his codes on chemometric models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助香菜肉丸采纳,获得10
2秒前
12秒前
平淡映秋发布了新的文献求助10
15秒前
focus完成签到 ,获得积分10
16秒前
香菜肉丸发布了新的文献求助10
19秒前
29秒前
38秒前
49秒前
59秒前
犬来八荒发布了新的文献求助10
59秒前
simple1完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Cherry发布了新的文献求助10
1分钟前
charih完成签到 ,获得积分10
1分钟前
1分钟前
CodeCraft应助犬来八荒采纳,获得10
1分钟前
1分钟前
1分钟前
ding应助小橘子吃傻子采纳,获得10
1分钟前
2分钟前
Tania完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
辉辉应助科研通管家采纳,获得10
3分钟前
3分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
wanci应助Tingshuo采纳,获得10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091