Genetic Algorithm with Multiple Fitness Functions for Generating Adversarial Examples

对抗制 维数之咒 遗传算法 计算机科学 适应度函数 局部最优 最优化问题 算法 人工智能 过程(计算) 数学优化 进化算法 黑匣子 机器学习 数学 操作系统
作者
Chenwang Wu,Wenjian Luo,Nan Zhou,Peilan Xu,Tao Zhu
标识
DOI:10.1109/cec45853.2021.9504790
摘要

Studies have shown that deep neural networks (DNNs) are susceptible to adversarial attacks, which can cause misclassification. The adversarial attack problem can be regarded as an optimization problem, then the genetic algorithm (GA) that is problem-independent can naturally be designed to solve the optimization problem to generate effective adversarial examples. Considering the dimensionality curse in the image processing field, traditional genetic algorithms in high-dimensional problems often fall into local optima. Therefore, we propose a GA with multiple fitness functions (MF-GA). Specifically, we divide the evolution process into three stages, i.e., exploration stage, exploitation stage, and stable stage. Besides, different fitness functions are used for different stages, which could help the GA to jump away from the local optimum.Experiments are conducted on three datasets, and four classic algorithms as well as the basic GA are adopted for comparisons. Experimental results demonstrate that MF-GA is an effective black-box attack method. Furthermore, although MF-GA is a black-box attack method, experimental results demonstrate the performance of MF-GA under the black-box environments is competitive when comparing to four classic algorithms under the white-box attack environments. This shows that evolutionary algorithms have great potential in adversarial attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
orixero应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
无花果应助科研通管家采纳,获得10
1秒前
枯藤应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
allenise完成签到,获得积分10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
酷炫若魔发布了新的文献求助10
2秒前
ax完成签到,获得积分10
2秒前
软软萌萌发布了新的文献求助10
2秒前
2秒前
SciGPT应助善良梦竹采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
柯不正完成签到,获得积分20
3秒前
凌凌嘻应助DrNaz采纳,获得10
4秒前
XIAOJU_U完成签到 ,获得积分10
4秒前
酷炫河马关注了科研通微信公众号
5秒前
结实老四发布了新的文献求助10
5秒前
年轻羿发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776350
求助须知:如何正确求助?哪些是违规求助? 5628713
关于积分的说明 15442059
捐赠科研通 4908468
什么是DOI,文献DOI怎么找? 2641217
邀请新用户注册赠送积分活动 1589167
关于科研通互助平台的介绍 1543851