Genetic Algorithm with Multiple Fitness Functions for Generating Adversarial Examples

对抗制 维数之咒 遗传算法 计算机科学 适应度函数 局部最优 最优化问题 算法 人工智能 过程(计算) 数学优化 进化算法 黑匣子 机器学习 数学 操作系统
作者
Chenwang Wu,Wenjian Luo,Nan Zhou,Peilan Xu,Tao Zhu
标识
DOI:10.1109/cec45853.2021.9504790
摘要

Studies have shown that deep neural networks (DNNs) are susceptible to adversarial attacks, which can cause misclassification. The adversarial attack problem can be regarded as an optimization problem, then the genetic algorithm (GA) that is problem-independent can naturally be designed to solve the optimization problem to generate effective adversarial examples. Considering the dimensionality curse in the image processing field, traditional genetic algorithms in high-dimensional problems often fall into local optima. Therefore, we propose a GA with multiple fitness functions (MF-GA). Specifically, we divide the evolution process into three stages, i.e., exploration stage, exploitation stage, and stable stage. Besides, different fitness functions are used for different stages, which could help the GA to jump away from the local optimum.Experiments are conducted on three datasets, and four classic algorithms as well as the basic GA are adopted for comparisons. Experimental results demonstrate that MF-GA is an effective black-box attack method. Furthermore, although MF-GA is a black-box attack method, experimental results demonstrate the performance of MF-GA under the black-box environments is competitive when comparing to four classic algorithms under the white-box attack environments. This shows that evolutionary algorithms have great potential in adversarial attacks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达磬完成签到,获得积分10
1秒前
2秒前
明理十三完成签到,获得积分10
2秒前
小饼干完成签到,获得积分10
3秒前
Cupid发布了新的文献求助30
5秒前
8秒前
8秒前
8秒前
柴三岁发布了新的文献求助10
9秒前
风味烤羊腿完成签到,获得积分0
10秒前
领导范儿应助i羽翼深蓝i采纳,获得10
11秒前
nuomici发布了新的文献求助30
12秒前
田様应助YIYI采纳,获得30
13秒前
14秒前
迅速斑马完成签到,获得积分10
14秒前
蔡蔡发布了新的文献求助10
14秒前
AQ完成签到,获得积分10
17秒前
19秒前
123完成签到 ,获得积分10
20秒前
JamesPei应助蔡蔡采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
22秒前
打打应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得30
22秒前
大个应助科研通管家采纳,获得10
22秒前
bkagyin应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
精明的高跟鞋完成签到 ,获得积分10
22秒前
细心秀发完成签到,获得积分10
25秒前
27秒前
chen给wgm的求助进行了留言
28秒前
薄荷油完成签到 ,获得积分10
31秒前
斯文败类应助小鱼丸采纳,获得10
32秒前
JamesPei应助细心秀发采纳,获得10
32秒前
隐形曼青应助细心秀发采纳,获得10
32秒前
Jasper应助细心秀发采纳,获得10
32秒前
zhangyunyun发布了新的文献求助10
33秒前
33秒前
34秒前
Silence完成签到 ,获得积分10
37秒前
39秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
临床微生物检验问与答 (第二版), 人民卫生出版社, 2014:146 500
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351004
求助须知:如何正确求助?哪些是违规求助? 2976541
关于积分的说明 8675492
捐赠科研通 2657683
什么是DOI,文献DOI怎么找? 1455204
科研通“疑难数据库(出版商)”最低求助积分说明 673751
邀请新用户注册赠送积分活动 664242