Genetic Algorithm with Multiple Fitness Functions for Generating Adversarial Examples

对抗制 维数之咒 遗传算法 计算机科学 适应度函数 局部最优 最优化问题 算法 人工智能 过程(计算) 数学优化 进化算法 黑匣子 机器学习 数学 操作系统
作者
Chenwang Wu,Wenjian Luo,Nan Zhou,Peilan Xu,Tao Zhu
标识
DOI:10.1109/cec45853.2021.9504790
摘要

Studies have shown that deep neural networks (DNNs) are susceptible to adversarial attacks, which can cause misclassification. The adversarial attack problem can be regarded as an optimization problem, then the genetic algorithm (GA) that is problem-independent can naturally be designed to solve the optimization problem to generate effective adversarial examples. Considering the dimensionality curse in the image processing field, traditional genetic algorithms in high-dimensional problems often fall into local optima. Therefore, we propose a GA with multiple fitness functions (MF-GA). Specifically, we divide the evolution process into three stages, i.e., exploration stage, exploitation stage, and stable stage. Besides, different fitness functions are used for different stages, which could help the GA to jump away from the local optimum.Experiments are conducted on three datasets, and four classic algorithms as well as the basic GA are adopted for comparisons. Experimental results demonstrate that MF-GA is an effective black-box attack method. Furthermore, although MF-GA is a black-box attack method, experimental results demonstrate the performance of MF-GA under the black-box environments is competitive when comparing to four classic algorithms under the white-box attack environments. This shows that evolutionary algorithms have great potential in adversarial attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
活泼的世平完成签到,获得积分10
1秒前
科目三应助younglsc2采纳,获得10
1秒前
Mikey_Teng发布了新的文献求助10
2秒前
2秒前
苹果新儿完成签到,获得积分10
2秒前
绿藻完成签到 ,获得积分10
2秒前
洛希极限发布了新的文献求助10
2秒前
生信好难完成签到,获得积分10
3秒前
chengzhiheng发布了新的文献求助10
3秒前
孤独的根号三完成签到,获得积分10
3秒前
大模型应助Arya采纳,获得10
4秒前
苹果新儿发布了新的文献求助10
5秒前
舟舟完成签到,获得积分10
5秒前
5秒前
Sunjz完成签到,获得积分10
5秒前
醉熏的烤鸡完成签到 ,获得积分10
6秒前
Yahooo发布了新的文献求助10
6秒前
陈陈完成签到,获得积分10
6秒前
7秒前
7秒前
suchui完成签到,获得积分10
7秒前
追寻梦之完成签到 ,获得积分10
7秒前
Hello应助玮玮采纳,获得30
8秒前
8秒前
陈的住气完成签到 ,获得积分10
8秒前
JSYSM发布了新的文献求助10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
9秒前
大模型应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580594
求助须知:如何正确求助?哪些是违规求助? 4665390
关于积分的说明 14756031
捐赠科研通 4606886
什么是DOI,文献DOI怎么找? 2528078
邀请新用户注册赠送积分活动 1497372
关于科研通互助平台的介绍 1466335