An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization

替代模型 进化算法 多目标优化 计算机科学 数学优化 分类 差异进化 遗传算法 最优化问题 机器学习 进化计算 人工智能 数学 算法
作者
Qiuzhen Lin,Xunfeng Wu,Lijia Ma,Jianqiang Li,Maoguo Gong,Carlos A. Coello Coello
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 631-645 被引量:60
标识
DOI:10.1109/tevc.2021.3103936
摘要

Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the increased number of decision variables in EMOPs, the prediction accuracy of surrogate models will deteriorate, which inevitably worsens the performance of SAEAs. To deal with this issue, this article suggests an ensemble surrogate-based framework for tackling EMOPs. In this framework, a global surrogate model is trained under the entire search space to explore the global area, while a number of surrogate submodels are trained under different search subspaces to exploit the subarea, so as to enhance the prediction accuracy and reliability. Moreover, a new infill sampling criterion is designed based on a set of reference vectors to select promising samples for training the models. To validate the generality and effectiveness of our framework, three state-of-the-art evolutionary algorithms [nondominated sorting genetic algorithm III (NSGA-III), multiobjective evolutionary algorithm based on decomposition with differential evolution (MOEA/D-DE) and reference vector-guided evolutionary algorithm (RVEA)] are embedded, which significantly improve their performance for solving most of the test EMOPs adopted in this article. When compared to some competitive SAEAs for solving EMOPs with up to 30 decision variables, the experimental results also validate the advantages of our approach in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿完成签到,获得积分10
1秒前
李健应助冷静荠采纳,获得30
1秒前
2秒前
111完成签到,获得积分10
2秒前
张书宁关注了科研通微信公众号
2秒前
yffffff应助Rylee采纳,获得20
3秒前
ash发布了新的文献求助10
3秒前
风中翠琴完成签到,获得积分10
3秒前
腼腆的千山完成签到,获得积分10
3秒前
动听的弼发布了新的文献求助10
4秒前
5秒前
6秒前
彭于晏应助沉静早晨采纳,获得30
7秒前
7秒前
星寒驳回了慕青应助
7秒前
隐形曼青应助小稻草人采纳,获得10
7秒前
丘比特应助体贴的嵩采纳,获得10
8秒前
小蘑菇应助xsf采纳,获得10
8秒前
pengcaiqing发布了新的文献求助10
8秒前
嘻嘻完成签到,获得积分10
9秒前
NexusExplorer应助paopao采纳,获得10
9秒前
10秒前
领导范儿应助Chengchao采纳,获得50
10秒前
额威风完成签到,获得积分10
10秒前
个性向卉发布了新的文献求助10
11秒前
11秒前
蕊蕊发布了新的文献求助10
12秒前
骑驴找马发布了新的文献求助10
13秒前
13秒前
7890733发布了新的文献求助10
13秒前
经久发布了新的文献求助10
13秒前
zhangyueyue完成签到,获得积分10
13秒前
avalanche应助好蓝采纳,获得20
14秒前
14秒前
15秒前
16秒前
zx驳回了ccm应助
16秒前
16秒前
16秒前
等待的蛋挞完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400477
求助须知:如何正确求助?哪些是违规求助? 4519746
关于积分的说明 14076482
捐赠科研通 4432591
什么是DOI,文献DOI怎么找? 2433726
邀请新用户注册赠送积分活动 1425955
关于科研通互助平台的介绍 1404638