An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization

替代模型 进化算法 多目标优化 计算机科学 数学优化 分类 差异进化 遗传算法 最优化问题 机器学习 进化计算 人工智能 数学 算法
作者
Qiuzhen Lin,Xunfeng Wu,Lijia Ma,Jianqiang Li,Maoguo Gong,Carlos A. Coello Coello
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 631-645 被引量:9
标识
DOI:10.1109/tevc.2021.3103936
摘要

Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the increased number of decision variables in EMOPs, the prediction accuracy of surrogate models will deteriorate, which inevitably worsens the performance of SAEAs. To deal with this issue, this article suggests an ensemble surrogate-based framework for tackling EMOPs. In this framework, a global surrogate model is trained under the entire search space to explore the global area, while a number of surrogate submodels are trained under different search subspaces to exploit the subarea, so as to enhance the prediction accuracy and reliability. Moreover, a new infill sampling criterion is designed based on a set of reference vectors to select promising samples for training the models. To validate the generality and effectiveness of our framework, three state-of-the-art evolutionary algorithms [nondominated sorting genetic algorithm III (NSGA-III), multiobjective evolutionary algorithm based on decomposition with differential evolution (MOEA/D-DE) and reference vector-guided evolutionary algorithm (RVEA)] are embedded, which significantly improve their performance for solving most of the test EMOPs adopted in this article. When compared to some competitive SAEAs for solving EMOPs with up to 30 decision variables, the experimental results also validate the advantages of our approach in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助东方三问采纳,获得10
1秒前
1秒前
香蕉觅云应助科研人才采纳,获得10
1秒前
laddy完成签到,获得积分20
2秒前
Ss发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
哈哈哈发布了新的文献求助10
9秒前
9秒前
aiai发布了新的文献求助10
11秒前
田様应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
16秒前
VVV完成签到,获得积分10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得30
16秒前
田様应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
17秒前
jssssssss发布了新的文献求助10
17秒前
啄木鸟仙人完成签到,获得积分10
17秒前
17秒前
19秒前
20秒前
aaron完成签到,获得积分10
22秒前
aiai完成签到 ,获得积分10
23秒前
CipherSage应助Li采纳,获得10
23秒前
大方元风完成签到,获得积分10
24秒前
Skywalker完成签到,获得积分10
24秒前
科研人才发布了新的文献求助10
24秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056175
求助须知:如何正确求助?哪些是违规求助? 2712737
关于积分的说明 7432964
捐赠科研通 2357715
什么是DOI,文献DOI怎么找? 1249040
科研通“疑难数据库(出版商)”最低求助积分说明 606843
版权声明 596195