An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization

替代模型 进化算法 多目标优化 计算机科学 数学优化 分类 差异进化 遗传算法 最优化问题 机器学习 进化计算 人工智能 数学 算法
作者
Qiuzhen Lin,Xunfeng Wu,Lijia Ma,Jianqiang Li,Maoguo Gong,Carlos A. Coello Coello
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 631-645 被引量:60
标识
DOI:10.1109/tevc.2021.3103936
摘要

Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the increased number of decision variables in EMOPs, the prediction accuracy of surrogate models will deteriorate, which inevitably worsens the performance of SAEAs. To deal with this issue, this article suggests an ensemble surrogate-based framework for tackling EMOPs. In this framework, a global surrogate model is trained under the entire search space to explore the global area, while a number of surrogate submodels are trained under different search subspaces to exploit the subarea, so as to enhance the prediction accuracy and reliability. Moreover, a new infill sampling criterion is designed based on a set of reference vectors to select promising samples for training the models. To validate the generality and effectiveness of our framework, three state-of-the-art evolutionary algorithms [nondominated sorting genetic algorithm III (NSGA-III), multiobjective evolutionary algorithm based on decomposition with differential evolution (MOEA/D-DE) and reference vector-guided evolutionary algorithm (RVEA)] are embedded, which significantly improve their performance for solving most of the test EMOPs adopted in this article. When compared to some competitive SAEAs for solving EMOPs with up to 30 decision variables, the experimental results also validate the advantages of our approach in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵泽鹏完成签到,获得积分10
刚刚
larychen完成签到,获得积分10
刚刚
1秒前
1秒前
蝎子莱莱启动完成签到,获得积分10
1秒前
SciGPT应助沉静自中采纳,获得10
1秒前
tangcl完成签到 ,获得积分10
2秒前
方浔完成签到,获得积分10
3秒前
3秒前
3秒前
浮游应助SI采纳,获得10
3秒前
dwls发布了新的文献求助10
4秒前
Ali发布了新的文献求助10
4秒前
Alicia完成签到,获得积分10
4秒前
5秒前
christy发布了新的文献求助30
5秒前
屋里彩虹发布了新的文献求助10
5秒前
小瑜完成签到,获得积分10
6秒前
研友_nPPz9n发布了新的文献求助10
6秒前
fighting完成签到,获得积分10
6秒前
超级的绫完成签到 ,获得积分10
7秒前
7秒前
科研通AI6应助欧阳大龙采纳,获得10
8秒前
科研通AI6应助冷语采纳,获得10
8秒前
CipherSage应助木木采纳,获得10
8秒前
小马甲应助SSU采纳,获得10
8秒前
汉堡肉发布了新的文献求助10
8秒前
qin发布了新的文献求助10
8秒前
沐风发布了新的文献求助10
9秒前
zyx完成签到 ,获得积分10
9秒前
李爱国应助XCH采纳,获得10
9秒前
林水程完成签到,获得积分10
9秒前
9秒前
Young完成签到,获得积分10
9秒前
研友_Good Hope完成签到,获得积分10
10秒前
syyyao完成签到,获得积分10
10秒前
落寞白曼发布了新的文献求助10
10秒前
11秒前
完美世界应助hao采纳,获得10
11秒前
小陈完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887