An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization

替代模型 进化算法 多目标优化 计算机科学 数学优化 分类 差异进化 遗传算法 最优化问题 机器学习 进化计算 人工智能 数学 算法
作者
Qiuzhen Lin,Xunfeng Wu,Lijia Ma,Jianqiang Li,Maoguo Gong,Carlos A. Coello Coello
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 631-645 被引量:9
标识
DOI:10.1109/tevc.2021.3103936
摘要

Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the increased number of decision variables in EMOPs, the prediction accuracy of surrogate models will deteriorate, which inevitably worsens the performance of SAEAs. To deal with this issue, this article suggests an ensemble surrogate-based framework for tackling EMOPs. In this framework, a global surrogate model is trained under the entire search space to explore the global area, while a number of surrogate submodels are trained under different search subspaces to exploit the subarea, so as to enhance the prediction accuracy and reliability. Moreover, a new infill sampling criterion is designed based on a set of reference vectors to select promising samples for training the models. To validate the generality and effectiveness of our framework, three state-of-the-art evolutionary algorithms [nondominated sorting genetic algorithm III (NSGA-III), multiobjective evolutionary algorithm based on decomposition with differential evolution (MOEA/D-DE) and reference vector-guided evolutionary algorithm (RVEA)] are embedded, which significantly improve their performance for solving most of the test EMOPs adopted in this article. When compared to some competitive SAEAs for solving EMOPs with up to 30 decision variables, the experimental results also validate the advantages of our approach in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助cco采纳,获得10
刚刚
liuyx完成签到 ,获得积分10
刚刚
刚刚
2秒前
4秒前
玻璃杯发布了新的文献求助10
4秒前
Peix发布了新的文献求助10
5秒前
5秒前
6秒前
mogekkko完成签到,获得积分20
7秒前
搜集达人应助Nicole采纳,获得10
7秒前
8秒前
wjcjk完成签到,获得积分10
8秒前
jessica完成签到,获得积分10
8秒前
瓜瓜发布了新的文献求助10
10秒前
英俊的铭应助Shennnn采纳,获得10
11秒前
CCY发布了新的文献求助10
11秒前
Peix完成签到,获得积分10
12秒前
科研通AI2S应助SC采纳,获得10
12秒前
111111完成签到,获得积分10
13秒前
在水一方应助秀丽笑容采纳,获得10
13秒前
丘比特应助yj采纳,获得10
14秒前
orixero应助皮皮的鹿采纳,获得30
18秒前
赖佳晗完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
上官若男应助瓜瓜采纳,获得10
24秒前
33发布了新的文献求助10
24秒前
蚝油盗梨完成签到 ,获得积分10
24秒前
26秒前
wjcjk关注了科研通微信公众号
26秒前
勤奋盼晴发布了新的文献求助10
27秒前
白鱼neko完成签到 ,获得积分10
27秒前
29秒前
30秒前
30秒前
dada发布了新的文献求助10
31秒前
大方马里奥完成签到,获得积分10
31秒前
smottom应助星屑落满天街采纳,获得20
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967279
求助须知:如何正确求助?哪些是违规求助? 3512575
关于积分的说明 11164253
捐赠科研通 3247522
什么是DOI,文献DOI怎么找? 1793850
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804495