Single-cell classification using graph convolutional networks

图形 模式识别(心理学) 数据挖掘 理论计算机科学
作者
Tianyu Wang,Jun Bai,Sheida Nabavi
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:22 (1): 364-364
标识
DOI:10.1186/s12859-021-04278-2
摘要

Analyzing single-cell RNA sequencing (scRNAseq) data plays an important role in understanding the intrinsic and extrinsic cellular processes in biological and biomedical research. One significant effort in this area is the identification of cell types. With the availability of a huge amount of single cell sequencing data and discovering more and more cell types, classifying cells into known cell types has become a priority nowadays. Several methods have been introduced to classify cells utilizing gene expression data. However, incorporating biological gene interaction networks has been proved valuable in cell classification procedures. In this study, we propose a multimodal end-to-end deep learning model, named sigGCN, for cell classification that combines a graph convolutional network (GCN) and a neural network to exploit gene interaction networks. We used standard classification metrics to evaluate the performance of the proposed method on the within-dataset classification and the cross-dataset classification. We compared the performance of the proposed method with those of the existing cell classification tools and traditional machine learning classification methods. Results indicate that the proposed method outperforms other commonly used methods in terms of classification accuracy and F1 scores. This study shows that the integration of prior knowledge about gene interactions with gene expressions using GCN methodologies can extract effective features improving the performance of cell classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nyxia发布了新的文献求助10
刚刚
1秒前
刻苦的兔子完成签到,获得积分10
1秒前
Knight发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
may完成签到,获得积分10
3秒前
3秒前
4秒前
饱满懿轩发布了新的文献求助10
4秒前
兴奋采梦完成签到,获得积分10
4秒前
1234hai完成签到 ,获得积分10
4秒前
clh0_0clh发布了新的文献求助10
5秒前
5秒前
顺利蜗牛完成签到,获得积分10
5秒前
sjh发布了新的文献求助10
5秒前
5秒前
白秋雪发布了新的文献求助10
5秒前
6秒前
安静凡旋发布了新的文献求助10
6秒前
完美世界应助虚幻赛凤采纳,获得10
6秒前
ming发布了新的文献求助10
6秒前
科研通AI2S应助liuliqiong采纳,获得10
6秒前
稳重书双发布了新的文献求助10
7秒前
英俊牛排发布了新的文献求助10
7秒前
华仔应助yuan采纳,获得10
7秒前
Simplefy完成签到,获得积分20
8秒前
8秒前
8秒前
陆拾荒完成签到,获得积分10
8秒前
聪明摩托发布了新的文献求助10
9秒前
科研通AI5应助粘粘纸采纳,获得10
9秒前
啾啾咪咪发布了新的文献求助10
9秒前
搜集达人应助墨之默采纳,获得10
10秒前
12秒前
书生发布了新的文献求助20
12秒前
sjh完成签到,获得积分10
13秒前
lilioa85完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246