Time Series Data Decomposition-Based Anomaly Detection and Evaluation Framework for Operational Management of Smart Water Grid

异常检测 数据挖掘 计算机科学 离群值 异常(物理) 时间序列 数据质量 杠杆(统计) 实时计算 网格 工程类 人工智能 地质学 机器学习 物理 凝聚态物理 运营管理 公制(单位) 大地测量学
作者
Zheng Yi Wu,Yekun He
出处
期刊:Journal of Water Resources Planning and Management [American Society of Civil Engineers]
卷期号:147 (9) 被引量:12
标识
DOI:10.1061/(asce)wr.1943-5452.0001433
摘要

With the increasing adoption of advanced meter infrastructure (AMI), smarter sensors, and temporary and/or permanent data loggers, it is imperative to leverage data analytics methods with hydraulic modeling to improve the quality and efficiency of water service. One important task is to timely detect and evaluate anomaly events so that corresponding actions can be taken to prevent and mitigate the impact of possible water service disruption, which may be caused by the anomaly incidents including but not limited to pipe bursts and unauthorized water usages. In this paper, a comprehensive analysis framework is developed for anomaly event detection and evaluation by developing an integrated solution, which is implemented in multiple components including: (1) data-preprocess or cleansing to eliminate and correct error data records; (2) decomposition of time series data to ensure data stationarity; (3) outlier detection by statistical process control methods with stationary time series; (4) classification of system anomaly events by either correlation analysis of high-flow events with low-pressure events or high-flow outliers with low-pressure outliers; and (5) quantitative evaluation of the system anomaly events with field reported leak incidents. The solution framework has been applied to the water supply zone that is permanent monitored with the flow meter at the inlet and 12 pressure stations throughout the zone with more than 8,000 pipes. Analysis has been conducted with one-year monitoring data and 106 historical leak records, which are employed to validate 526 detected anomaly events. Among them, a 75% true positive rate has been achieved and 90% of 106 field events have been successfully detected with a lead time of more than 24 h. The results obtained indicate that the developed solution method is effective at facilitating the operational management of a smart water grid by maximizing the return of investment in continuously monitoring water distribution networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
TvT发布了新的文献求助10
1秒前
yls发布了新的文献求助10
1秒前
3秒前
Jasper应助zhangxu采纳,获得10
5秒前
研友_VZG7GZ应助梓泽丘墟采纳,获得100
6秒前
7秒前
7秒前
9秒前
9秒前
10秒前
aaaamy发布了新的文献求助10
10秒前
酷酷画笔发布了新的文献求助10
11秒前
jj发布了新的文献求助10
12秒前
13秒前
隐形曼青应助TvT采纳,获得10
13秒前
我方还剩艺人完成签到 ,获得积分10
13秒前
zhangxu完成签到,获得积分10
14秒前
14秒前
404nf完成签到,获得积分10
14秒前
jmjm发布了新的文献求助10
16秒前
nail完成签到,获得积分10
17秒前
ljact发布了新的文献求助10
17秒前
橘子柚子完成签到 ,获得积分10
17秒前
keeingGo发布了新的文献求助10
17秒前
zhangxu发布了新的文献求助10
19秒前
19秒前
河中医朵花完成签到,获得积分10
20秒前
追光完成签到,获得积分10
20秒前
小禾一定行完成签到 ,获得积分10
21秒前
眠茶醒药完成签到,获得积分10
23秒前
领导范儿应助Zox采纳,获得10
23秒前
胖虎完成签到,获得积分10
23秒前
康园完成签到,获得积分10
24秒前
南国之霄发布了新的文献求助10
24秒前
25秒前
dsfafd完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
JIA关注了科研通微信公众号
27秒前
略略略完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419502
求助须知:如何正确求助?哪些是违规求助? 4534740
关于积分的说明 14146552
捐赠科研通 4451384
什么是DOI,文献DOI怎么找? 2441744
邀请新用户注册赠送积分活动 1433305
关于科研通互助平台的介绍 1410587