亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Time Series Data Decomposition-Based Anomaly Detection and Evaluation Framework for Operational Management of Smart Water Grid

异常检测 数据挖掘 计算机科学 离群值 异常(物理) 时间序列 数据质量 杠杆(统计) 实时计算 网格 工程类 人工智能 地质学 机器学习 物理 凝聚态物理 运营管理 公制(单位) 大地测量学
作者
Zheng Yi Wu,Yekun He
出处
期刊:Journal of Water Resources Planning and Management [American Society of Civil Engineers]
卷期号:147 (9) 被引量:12
标识
DOI:10.1061/(asce)wr.1943-5452.0001433
摘要

With the increasing adoption of advanced meter infrastructure (AMI), smarter sensors, and temporary and/or permanent data loggers, it is imperative to leverage data analytics methods with hydraulic modeling to improve the quality and efficiency of water service. One important task is to timely detect and evaluate anomaly events so that corresponding actions can be taken to prevent and mitigate the impact of possible water service disruption, which may be caused by the anomaly incidents including but not limited to pipe bursts and unauthorized water usages. In this paper, a comprehensive analysis framework is developed for anomaly event detection and evaluation by developing an integrated solution, which is implemented in multiple components including: (1) data-preprocess or cleansing to eliminate and correct error data records; (2) decomposition of time series data to ensure data stationarity; (3) outlier detection by statistical process control methods with stationary time series; (4) classification of system anomaly events by either correlation analysis of high-flow events with low-pressure events or high-flow outliers with low-pressure outliers; and (5) quantitative evaluation of the system anomaly events with field reported leak incidents. The solution framework has been applied to the water supply zone that is permanent monitored with the flow meter at the inlet and 12 pressure stations throughout the zone with more than 8,000 pipes. Analysis has been conducted with one-year monitoring data and 106 historical leak records, which are employed to validate 526 detected anomaly events. Among them, a 75% true positive rate has been achieved and 90% of 106 field events have been successfully detected with a lead time of more than 24 h. The results obtained indicate that the developed solution method is effective at facilitating the operational management of a smart water grid by maximizing the return of investment in continuously monitoring water distribution networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhh完成签到 ,获得积分10
刚刚
Ahha发布了新的文献求助10
1秒前
陈静发布了新的文献求助10
4秒前
133发布了新的文献求助10
5秒前
经冰夏完成签到 ,获得积分10
5秒前
慕青应助WW采纳,获得10
6秒前
8秒前
11秒前
阿仁不想搞科研完成签到 ,获得积分10
11秒前
14秒前
都市隶人完成签到,获得积分10
15秒前
李健应助Flipped采纳,获得10
15秒前
冬柳发布了新的文献求助10
16秒前
LuckyCookie发布了新的文献求助10
17秒前
都市隶人发布了新的文献求助10
18秒前
褚明雪完成签到,获得积分10
20秒前
21秒前
Orange应助米月采纳,获得10
23秒前
23秒前
容cc完成签到,获得积分20
24秒前
Lucas应助都市隶人采纳,获得10
24秒前
25秒前
m(_._)m完成签到 ,获得积分0
25秒前
27秒前
容cc发布了新的文献求助10
27秒前
Flipped发布了新的文献求助10
28秒前
yiyi131发布了新的文献求助10
33秒前
hope发布了新的文献求助10
42秒前
49秒前
123456完成签到,获得积分10
50秒前
133完成签到,获得积分10
53秒前
小鱼发布了新的文献求助10
56秒前
Windy完成签到 ,获得积分10
56秒前
133关闭了133文献求助
56秒前
李健的粉丝团团长应助hope采纳,获得10
1分钟前
1分钟前
_ban发布了新的文献求助10
1分钟前
ZHY完成签到 ,获得积分10
1分钟前
大个应助巴西琉斯采纳,获得10
1分钟前
江子骞完成签到 ,获得积分10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793538
关于积分的说明 7806782
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303425
科研通“疑难数据库(出版商)”最低求助积分说明 626871
版权声明 601314