Time Series Data Decomposition-Based Anomaly Detection and Evaluation Framework for Operational Management of Smart Water Grid

异常检测 数据挖掘 计算机科学 离群值 异常(物理) 时间序列 数据质量 杠杆(统计) 实时计算 网格 工程类 人工智能 地质学 机器学习 物理 凝聚态物理 运营管理 公制(单位) 大地测量学
作者
Zheng Yi Wu,Yekun He
出处
期刊:Journal of Water Resources Planning and Management [American Society of Civil Engineers]
卷期号:147 (9) 被引量:12
标识
DOI:10.1061/(asce)wr.1943-5452.0001433
摘要

With the increasing adoption of advanced meter infrastructure (AMI), smarter sensors, and temporary and/or permanent data loggers, it is imperative to leverage data analytics methods with hydraulic modeling to improve the quality and efficiency of water service. One important task is to timely detect and evaluate anomaly events so that corresponding actions can be taken to prevent and mitigate the impact of possible water service disruption, which may be caused by the anomaly incidents including but not limited to pipe bursts and unauthorized water usages. In this paper, a comprehensive analysis framework is developed for anomaly event detection and evaluation by developing an integrated solution, which is implemented in multiple components including: (1) data-preprocess or cleansing to eliminate and correct error data records; (2) decomposition of time series data to ensure data stationarity; (3) outlier detection by statistical process control methods with stationary time series; (4) classification of system anomaly events by either correlation analysis of high-flow events with low-pressure events or high-flow outliers with low-pressure outliers; and (5) quantitative evaluation of the system anomaly events with field reported leak incidents. The solution framework has been applied to the water supply zone that is permanent monitored with the flow meter at the inlet and 12 pressure stations throughout the zone with more than 8,000 pipes. Analysis has been conducted with one-year monitoring data and 106 historical leak records, which are employed to validate 526 detected anomaly events. Among them, a 75% true positive rate has been achieved and 90% of 106 field events have been successfully detected with a lead time of more than 24 h. The results obtained indicate that the developed solution method is effective at facilitating the operational management of a smart water grid by maximizing the return of investment in continuously monitoring water distribution networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
milkmore发布了新的文献求助10
刚刚
kirakira发布了新的文献求助10
1秒前
CDI和LIB发布了新的文献求助10
2秒前
Shahid发布了新的文献求助10
2秒前
2秒前
LIUYC完成签到,获得积分10
2秒前
无限草丛完成签到,获得积分10
3秒前
3秒前
踏实绮露完成签到 ,获得积分10
3秒前
4秒前
4秒前
大模型应助康康采纳,获得10
4秒前
wangziyuan完成签到,获得积分10
4秒前
4秒前
负责冰烟发布了新的文献求助10
5秒前
5秒前
6秒前
caiji完成签到,获得积分10
7秒前
小垃圾发布了新的文献求助10
7秒前
小蚊子完成签到,获得积分10
8秒前
代代代代完成签到,获得积分10
8秒前
所所应助ZL张莉采纳,获得10
8秒前
Hoyshin应助fanyi采纳,获得20
9秒前
janevava发布了新的文献求助30
9秒前
小方完成签到,获得积分0
9秒前
方方方发布了新的文献求助10
10秒前
善学以致用应助煎饼果子采纳,获得10
10秒前
Beverly完成签到,获得积分10
10秒前
被动科研发布了新的文献求助10
10秒前
shuqian完成签到,获得积分10
11秒前
暴躁的香旋完成签到,获得积分10
12秒前
12秒前
CHINA_C13发布了新的文献求助150
12秒前
13秒前
13秒前
14秒前
cat_head发布了新的文献求助10
14秒前
Sally完成签到,获得积分10
15秒前
L罗1完成签到,获得积分10
15秒前
浮游应助zz采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403