重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Time Series Data Decomposition-Based Anomaly Detection and Evaluation Framework for Operational Management of Smart Water Grid

异常检测 数据挖掘 计算机科学 离群值 异常(物理) 时间序列 数据质量 杠杆(统计) 实时计算 网格 工程类 人工智能 地质学 机器学习 物理 凝聚态物理 运营管理 公制(单位) 大地测量学
作者
Zheng Yi Wu,Yekun He
出处
期刊:Journal of Water Resources Planning and Management [American Society of Civil Engineers]
卷期号:147 (9) 被引量:12
标识
DOI:10.1061/(asce)wr.1943-5452.0001433
摘要

With the increasing adoption of advanced meter infrastructure (AMI), smarter sensors, and temporary and/or permanent data loggers, it is imperative to leverage data analytics methods with hydraulic modeling to improve the quality and efficiency of water service. One important task is to timely detect and evaluate anomaly events so that corresponding actions can be taken to prevent and mitigate the impact of possible water service disruption, which may be caused by the anomaly incidents including but not limited to pipe bursts and unauthorized water usages. In this paper, a comprehensive analysis framework is developed for anomaly event detection and evaluation by developing an integrated solution, which is implemented in multiple components including: (1) data-preprocess or cleansing to eliminate and correct error data records; (2) decomposition of time series data to ensure data stationarity; (3) outlier detection by statistical process control methods with stationary time series; (4) classification of system anomaly events by either correlation analysis of high-flow events with low-pressure events or high-flow outliers with low-pressure outliers; and (5) quantitative evaluation of the system anomaly events with field reported leak incidents. The solution framework has been applied to the water supply zone that is permanent monitored with the flow meter at the inlet and 12 pressure stations throughout the zone with more than 8,000 pipes. Analysis has been conducted with one-year monitoring data and 106 historical leak records, which are employed to validate 526 detected anomaly events. Among them, a 75% true positive rate has been achieved and 90% of 106 field events have been successfully detected with a lead time of more than 24 h. The results obtained indicate that the developed solution method is effective at facilitating the operational management of a smart water grid by maximizing the return of investment in continuously monitoring water distribution networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Z.发布了新的文献求助10
刚刚
Lucinda完成签到,获得积分20
1秒前
1秒前
nixiaozhi发布了新的文献求助10
1秒前
2秒前
2秒前
123发布了新的文献求助10
3秒前
科研通AI6应助kiki采纳,获得10
3秒前
山楂发布了新的文献求助10
3秒前
one time发布了新的文献求助10
3秒前
科研通AI6应助任性若云采纳,获得10
3秒前
LEMON完成签到,获得积分10
4秒前
4秒前
5秒前
望春风发布了新的文献求助20
5秒前
...发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助苏洋采纳,获得10
5秒前
科研通AI6应助李天翔采纳,获得10
5秒前
6秒前
Akim应助Jenny采纳,获得10
6秒前
寒sddsf发布了新的文献求助10
6秒前
认真以云完成签到 ,获得积分10
6秒前
6秒前
6秒前
酷波er应助oiinn采纳,获得10
7秒前
Azura完成签到,获得积分10
7秒前
123noo发布了新的文献求助10
7秒前
7秒前
科研通AI6应助www采纳,获得30
7秒前
7秒前
要减肥发布了新的文献求助10
8秒前
yangdoudou发布了新的文献求助30
8秒前
Colin_Chen完成签到,获得积分10
9秒前
非酋发布了新的文献求助30
9秒前
凌云完成签到,获得积分10
9秒前
FFF发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654