Deep Learning-based Diagnosis of Glaucoma Using Wide-field Optical Coherence Tomography Images

光学相干层析成像 青光眼 人工智能 卷积神经网络 接收机工作特性 医学 深度学习 神经纤维层 模式识别(心理学) 计算机科学 眼科 机器学习
作者
Younji Shin,Hyunsoo Cho,Hyo Chan Jeong,Mincheol Seong,Jun Won Choi,Won June Lee
出处
期刊:Journal of Glaucoma [Ovid Technologies (Wolters Kluwer)]
卷期号:30 (9): 803-812 被引量:13
标识
DOI:10.1097/ijg.0000000000001885
摘要

Purpose: (1) To evaluate the performance of deep learning (DL) classifier in detecting glaucoma, based on wide-field swept-source optical coherence tomography (SS-OCT) images. (2) To assess the performance of DL-based fusion methods in diagnosing glaucoma using a variety of wide-field SS-OCT images and compare their diagnostic abilities with that of conventional parameter-based methods. Methods: Overall, 675 eyes, including 258 healthy eyes and 417 eyes with glaucoma were enrolled in this retrospective observational study. Each single-page wide-field report (12×9 mm) of wide-field SS-OCT imaging provides different types of images that reflect the state of the eyes. A DL-based automated diagnosis system was proposed to detect glaucoma and identify its stage based on such images. We applied the convolutional neural network to each type of image to detect glaucoma. In addition, 2 fusion strategies, fusion by convolution network (FCN) and fusion by fully connected network (FFC) were developed; they differ in terms of the level of fusion of features derived from convolutional neural networks. The diagnostic models were trained using 382 and 293 images in the training and test data sets, respectively. The diagnostic ability of this method was compared with conventional parameters of the thickness of the retinal nerve fiber layer and ganglion cell complex. Results: FCN achieved an area under the receiver operating characteristic curve (AUC) of 0.987 (95% confidence interval, CI: 0.968-0.996) and an accuracy of 95.22%. In contrast, FFC achieved an AUC of 0.987 (95% CI, 0.971-0.998) and an accuracy of 95.90%. Both FCN and FFC outperformed the conventional method ( P <0.001). In detecting early glaucoma, both FCN and FFC achieved significantly higher AUC and accuracy than the conventional approach ( P <0.001). In addition, the classification performance of the DL-based fusion methods in identifying the 5 stages of glaucoma is presented via a confusion matrix. Conclusion: DL protocol based on wide-field OCT images outperformed the conventional method in terms of both AUC and accuracy. Therefore, DL-based diagnostic methods using wide-field OCT images are promising in diagnosing glaucoma in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
monocle发布了新的文献求助10
刚刚
可爱的函函应助星辰采纳,获得10
刚刚
霸气的代云完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
光芒万丈发布了新的文献求助10
5秒前
6秒前
6秒前
Owen应助踏实语蓉采纳,获得10
6秒前
专注大门发布了新的文献求助10
7秒前
cc发布了新的文献求助10
8秒前
a1459196273完成签到,获得积分10
10秒前
王小嘻发布了新的文献求助30
10秒前
Aaernan发布了新的文献求助10
11秒前
草玉梅皂苷完成签到,获得积分10
12秒前
小二郎发布了新的文献求助10
13秒前
13秒前
bkagyin应助樊书南采纳,获得10
13秒前
沉淀中的黄绿医生完成签到,获得积分10
14秒前
14秒前
武俊怡完成签到,获得积分10
14秒前
充电宝应助Becky采纳,获得10
15秒前
今后应助FUNG采纳,获得10
16秒前
我是老大应助研0被骂儿采纳,获得10
16秒前
飞飞发布了新的文献求助10
19秒前
可靠的大美完成签到,获得积分10
19秒前
我是老大应助月牙超级甜采纳,获得10
23秒前
23秒前
淡定的翠霜关注了科研通微信公众号
23秒前
舒心的青槐完成签到 ,获得积分10
24秒前
火星上以亦完成签到,获得积分10
25秒前
26秒前
背后的问寒完成签到,获得积分10
27秒前
Soul完成签到 ,获得积分20
27秒前
Akim应助小二郎采纳,获得10
30秒前
32秒前
33秒前
科研通AI2S应助littleblack采纳,获得10
34秒前
34秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084836
求助须知:如何正确求助?哪些是违规求助? 2737894
关于积分的说明 7547256
捐赠科研通 2387494
什么是DOI,文献DOI怎么找? 1265999
科研通“疑难数据库(出版商)”最低求助积分说明 613212
版权声明 598429