Deep Learning-based Diagnosis of Glaucoma Using Wide-field Optical Coherence Tomography Images

光学相干层析成像 青光眼 人工智能 卷积神经网络 接收机工作特性 医学 深度学习 神经纤维层 模式识别(心理学) 计算机科学 眼科 机器学习
作者
Younji Shin,Hyunsoo Cho,Hyo Chan Jeong,Mincheol Seong,Jun Won Choi,Won June Lee
出处
期刊:Journal of Glaucoma [Ovid Technologies (Wolters Kluwer)]
卷期号:30 (9): 803-812 被引量:13
标识
DOI:10.1097/ijg.0000000000001885
摘要

Purpose: (1) To evaluate the performance of deep learning (DL) classifier in detecting glaucoma, based on wide-field swept-source optical coherence tomography (SS-OCT) images. (2) To assess the performance of DL-based fusion methods in diagnosing glaucoma using a variety of wide-field SS-OCT images and compare their diagnostic abilities with that of conventional parameter-based methods. Methods: Overall, 675 eyes, including 258 healthy eyes and 417 eyes with glaucoma were enrolled in this retrospective observational study. Each single-page wide-field report (12×9 mm) of wide-field SS-OCT imaging provides different types of images that reflect the state of the eyes. A DL-based automated diagnosis system was proposed to detect glaucoma and identify its stage based on such images. We applied the convolutional neural network to each type of image to detect glaucoma. In addition, 2 fusion strategies, fusion by convolution network (FCN) and fusion by fully connected network (FFC) were developed; they differ in terms of the level of fusion of features derived from convolutional neural networks. The diagnostic models were trained using 382 and 293 images in the training and test data sets, respectively. The diagnostic ability of this method was compared with conventional parameters of the thickness of the retinal nerve fiber layer and ganglion cell complex. Results: FCN achieved an area under the receiver operating characteristic curve (AUC) of 0.987 (95% confidence interval, CI: 0.968-0.996) and an accuracy of 95.22%. In contrast, FFC achieved an AUC of 0.987 (95% CI, 0.971-0.998) and an accuracy of 95.90%. Both FCN and FFC outperformed the conventional method ( P <0.001). In detecting early glaucoma, both FCN and FFC achieved significantly higher AUC and accuracy than the conventional approach ( P <0.001). In addition, the classification performance of the DL-based fusion methods in identifying the 5 stages of glaucoma is presented via a confusion matrix. Conclusion: DL protocol based on wide-field OCT images outperformed the conventional method in terms of both AUC and accuracy. Therefore, DL-based diagnostic methods using wide-field OCT images are promising in diagnosing glaucoma in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI5应助SCI采纳,获得10
1秒前
科研通AI5应助hobowei采纳,获得10
4秒前
可爱奇异果完成签到 ,获得积分10
4秒前
wang发布了新的文献求助10
5秒前
太空人完成签到,获得积分10
5秒前
123发布了新的文献求助10
6秒前
7秒前
该睡觉啦完成签到,获得积分20
7秒前
7秒前
莫x莫完成签到 ,获得积分10
9秒前
loewy完成签到,获得积分10
9秒前
黄婷发布了新的文献求助10
9秒前
9秒前
yuan完成签到,获得积分10
9秒前
zho发布了新的文献求助10
9秒前
9秒前
苏苏完成签到,获得积分10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得80
10秒前
Hello应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
万能图书馆应助内向秋寒采纳,获得10
10秒前
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
zzzq应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得30
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
soso应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794