清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning-based Diagnosis of Glaucoma Using Wide-field Optical Coherence Tomography Images

光学相干层析成像 青光眼 人工智能 卷积神经网络 接收机工作特性 医学 深度学习 神经纤维层 模式识别(心理学) 计算机科学 眼科 机器学习
作者
Younji Shin,Hyunsoo Cho,Hyo Chan Jeong,Mincheol Seong,Jun Won Choi,Won June Lee
出处
期刊:Journal of Glaucoma [Ovid Technologies (Wolters Kluwer)]
卷期号:30 (9): 803-812 被引量:13
标识
DOI:10.1097/ijg.0000000000001885
摘要

Purpose: (1) To evaluate the performance of deep learning (DL) classifier in detecting glaucoma, based on wide-field swept-source optical coherence tomography (SS-OCT) images. (2) To assess the performance of DL-based fusion methods in diagnosing glaucoma using a variety of wide-field SS-OCT images and compare their diagnostic abilities with that of conventional parameter-based methods. Methods: Overall, 675 eyes, including 258 healthy eyes and 417 eyes with glaucoma were enrolled in this retrospective observational study. Each single-page wide-field report (12×9 mm) of wide-field SS-OCT imaging provides different types of images that reflect the state of the eyes. A DL-based automated diagnosis system was proposed to detect glaucoma and identify its stage based on such images. We applied the convolutional neural network to each type of image to detect glaucoma. In addition, 2 fusion strategies, fusion by convolution network (FCN) and fusion by fully connected network (FFC) were developed; they differ in terms of the level of fusion of features derived from convolutional neural networks. The diagnostic models were trained using 382 and 293 images in the training and test data sets, respectively. The diagnostic ability of this method was compared with conventional parameters of the thickness of the retinal nerve fiber layer and ganglion cell complex. Results: FCN achieved an area under the receiver operating characteristic curve (AUC) of 0.987 (95% confidence interval, CI: 0.968-0.996) and an accuracy of 95.22%. In contrast, FFC achieved an AUC of 0.987 (95% CI, 0.971-0.998) and an accuracy of 95.90%. Both FCN and FFC outperformed the conventional method ( P <0.001). In detecting early glaucoma, both FCN and FFC achieved significantly higher AUC and accuracy than the conventional approach ( P <0.001). In addition, the classification performance of the DL-based fusion methods in identifying the 5 stages of glaucoma is presented via a confusion matrix. Conclusion: DL protocol based on wide-field OCT images outperformed the conventional method in terms of both AUC and accuracy. Therefore, DL-based diagnostic methods using wide-field OCT images are promising in diagnosing glaucoma in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
renpp822发布了新的文献求助10
6秒前
doreen完成签到 ,获得积分10
19秒前
vsvsgo完成签到,获得积分10
20秒前
烟消云散完成签到,获得积分10
21秒前
pluto应助hh0采纳,获得10
23秒前
zmuzhang2019完成签到,获得积分10
32秒前
pluto应助hh0采纳,获得10
47秒前
科研通AI2S应助hh0采纳,获得10
1分钟前
Richard完成签到 ,获得积分10
1分钟前
guoguo1119完成签到 ,获得积分10
2分钟前
小小aa16完成签到,获得积分10
2分钟前
章鱼完成签到,获得积分10
3分钟前
3分钟前
隐形问萍发布了新的文献求助30
4分钟前
隐形问萍发布了新的文献求助10
4分钟前
oaoalaa完成签到 ,获得积分10
4分钟前
南城完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
可夫司机完成签到 ,获得积分10
5分钟前
Hyacinth完成签到 ,获得积分10
5分钟前
拓跋雨梅完成签到 ,获得积分0
6分钟前
饱满的棒棒糖完成签到 ,获得积分10
6分钟前
智勇双全完成签到,获得积分10
6分钟前
lovexa完成签到,获得积分10
6分钟前
dreamwalk完成签到 ,获得积分10
6分钟前
iberis完成签到 ,获得积分10
7分钟前
kittency完成签到 ,获得积分10
7分钟前
含糊的茹妖完成签到 ,获得积分10
7分钟前
theo完成签到 ,获得积分10
7分钟前
8分钟前
tannie完成签到 ,获得积分10
8分钟前
renpp822发布了新的文献求助10
8分钟前
wwe完成签到,获得积分10
8分钟前
creep2020完成签到,获得积分10
8分钟前
gyx完成签到 ,获得积分10
9分钟前
zhangguo完成签到 ,获得积分10
10分钟前
10分钟前
莎莎完成签到 ,获得积分10
11分钟前
行走完成签到,获得积分10
11分钟前
缥缈的钻石完成签到,获得积分10
12分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239003
求助须知:如何正确求助?哪些是违规求助? 2884295
关于积分的说明 8232922
捐赠科研通 2552338
什么是DOI,文献DOI怎么找? 1380690
科研通“疑难数据库(出版商)”最低求助积分说明 649071
邀请新用户注册赠送积分活动 624769