数学
指数稳定性
吸引子
人口模型
理论(学习稳定性)
人口
李雅普诺夫函数
霍普夫分叉
分叉
非线性系统
边界(拓扑)
数学分析
应用数学
物理
计算机科学
量子力学
机器学习
社会学
人口学
作者
Zhaohai Ma,Pierre Magal
出处
期刊:Cornell University - arXiv
日期:2021-01-01
被引量:1
标识
DOI:10.48550/arxiv.2105.07412
摘要
In this paper, we investigate the global asymptotic stability of an age-structured population dynamics model with a Ricker's type of birth function. This model is a hyperbolic partial differential equation with a nonlinear and nonlocal boundary condition. We prove a uniform persistence result for the semi-flow generated by this model. We obtain the existence of global attractors and we prove the global asymptotic stability of the positive equilibrium by using a suitable Lyapunov functional. Furthermore, we prove that our global asymptotic stability result is sharp, in the sense that Hopf bifurcation may occur as close as we want from the region global stability in the space of parameter.
科研通智能强力驱动
Strongly Powered by AbleSci AI