热导率
各向异性
材料科学
热传导
范德瓦尔斯力
导电体
热的
凝聚态物理
物理
复合材料
热力学
光学
化学
分子
有机化学
作者
Shi En Kim,Fauzia Mujid,Akash Rai,Fredrik Eriksson,Joonki Suh,Preeti Poddar,Ariana Ray,Chibeom Park,Erik Fransson,Yu Zhong,David A. Muller,Paul Erhart,David G. Cahill,Jiwoong Park
出处
期刊:Nature
[Springer Nature]
日期:2021-09-29
卷期号:597 (7878): 660-665
被引量:194
标识
DOI:10.1038/s41586-021-03867-8
摘要
Abstract The densification of integrated circuits requires thermal management strategies and high thermal conductivity materials 1–3 . Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis 4,5 . However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials. Here we report extremely anisotropic thermal conductors based on large-area van der Waals thin films with random interlayer rotations, which produce a room-temperature thermal anisotropy ratio close to 900 in MoS 2 , one of the highest ever reported. This is enabled by the interlayer rotations that impede the through-plane thermal transport, while the long-range intralayer crystallinity maintains high in-plane thermal conductivity. We measure ultralow thermal conductivities in the through-plane direction for MoS 2 (57 ± 3 mW m −1 K −1 ) and WS 2 (41 ± 3 mW m −1 K −1 ) films, and we quantitatively explain these values using molecular dynamics simulations that reveal one-dimensional glass-like thermal transport. Conversely, the in-plane thermal conductivity in these MoS 2 films is close to the single-crystal value. Covering nanofabricated gold electrodes with our anisotropic films prevents overheating of the electrodes and blocks heat from reaching the device surface. Our work establishes interlayer rotation in crystalline layered materials as a new degree of freedom for engineering-directed heat transport in solid-state systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI