Identification of the metabolic signatures of prostate cancer by mass spectrometry‐based plasma and urine metabolomics analysis

前列腺癌 代谢组学 前列腺 医学 内科学 癌症 尿素循环 内分泌学 生物信息学 化学 生物 生物化学 氨基酸 精氨酸
作者
Chaowen Yu,Lingfang Niu,Li Luo,Ting Li,Limei Duan,Zhenting He,Yan Zhao,Lin Zou,Xiaohou Wu,Chunli Luo
出处
期刊:The Prostate [Wiley]
卷期号:81 (16): 1320-1328 被引量:14
标识
DOI:10.1002/pros.24229
摘要

Abstract Objective Prostate cancer (PCa) is one of the most commonly diagnosed cancers among men which is associated with profound metabolic changes. Systematic analysis of the metabolic alterations and identification of new biomarkers may benefit PCa diagnosis and a deep understanding of the pathological mechanism. The purpose of this study was to determine the metabolic features of PCa. Methods Plasma and urine metabolites from 89 prostate cancer (PCa) patients, 84 benign prostatic hyperplasia (BPH) patients, and 70 healthy males were analyzed using LC‐MS/MS and GC‐MS. The Orthogonalised Partial Least Squares Discriminant Analysis (OPLS‐DA) was used to find the significantly changed metabolites. The clinical value of the candidate markers was examined by receiver operating characteristic curve analysis and compared with prostate‐specific antigen (PSA). Results Multivariate statistical analyses found a series of altered metabolites, which related to the urea cycle, tricarboxylic acid cycle (TCA), fatty acid metabolism, and the glycine cleavage system. Plasma Glu/Gln showed the highest predictive value (AUC = 0.984) when differentiating PCa patients from healthy controls, with a higher sensitivity than PSA (96.6% vs. 94.4%). Both Glu/Gln and PSA displayed a low specificity when differentiating PCa patients from BPH patients (<53.2%), while the combination of Glu/Gln and PSA can further increase the diagnostic specificity to 66.9%. Conclusions The present study showed the metabolic features of PCa, provided strong evidence that the amide nitrogen and the energy metabolic pathways could be a valuable source of markers for PCa. Several candidate markers identified in this study were clinically valuable for further assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研学术完成签到,获得积分10
1秒前
dong应助张进萍采纳,获得10
2秒前
NexusExplorer应助张进萍采纳,获得10
2秒前
2秒前
星辰大海应助秀丽莛采纳,获得10
2秒前
西瓜完成签到 ,获得积分10
3秒前
气945发布了新的文献求助10
3秒前
4秒前
samllcloud发布了新的文献求助10
4秒前
明理的曼凡应助HYT采纳,获得10
7秒前
鸣笛应助樱花恋采纳,获得30
8秒前
8秒前
10秒前
努力努力再努力1819完成签到,获得积分10
13秒前
14秒前
倩倩发布了新的文献求助50
17秒前
威武的皮卡丘完成签到,获得积分10
19秒前
20秒前
李爱国应助张晶晶采纳,获得10
22秒前
24秒前
请叫我风吹麦浪应助itsss采纳,获得20
26秒前
情怀应助爱学习的曼卉采纳,获得10
29秒前
29秒前
开朗的忆梅关注了科研通微信公众号
30秒前
31秒前
33秒前
maozhehai29999完成签到,获得积分10
34秒前
酷波er应助lisier采纳,获得10
34秒前
佳佳应助阿北采纳,获得10
36秒前
明理的曼凡应助HYT采纳,获得10
36秒前
kingwill发布了新的文献求助20
36秒前
36秒前
Duolalala完成签到,获得积分10
37秒前
张晶晶完成签到,获得积分10
38秒前
小六完成签到,获得积分10
38秒前
汤泽琪完成签到,获得积分10
39秒前
42秒前
42秒前
英俊的铭应助xinran采纳,获得10
42秒前
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993711
求助须知:如何正确求助?哪些是违规求助? 3534447
关于积分的说明 11265414
捐赠科研通 3274169
什么是DOI,文献DOI怎么找? 1806326
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712