A feature learning-based method for impact load reconstruction and localization of the plate-rib assembled structure

深度学习 卷积神经网络 循环神经网络 计算机科学 特征学习 人工智能 特征工程 编码器 非线性系统 特征(语言学) 模式识别(心理学) 人工神经网络 算法 量子力学 操作系统 物理 哲学 语言学
作者
Tao Chen,Liang Guo,Andongzhe Duan,Hongli Gao,Tao Feng,Yichen He
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:21 (4): 1590-1607 被引量:11
标识
DOI:10.1177/14759217211038065
摘要

Impact load is the load that machines frequently experienced in engineering applications. Its time-history reconstruction and localization are crucial for structural health monitoring and reliability analysis. However, when identifying random impact loads, conventional inversion methods usually do not perform well because of complex formula derivation, infeasibility of nonlinear structure, and ill-posed problem. Deep learning methods have great ability of feature learning and nonlinear representation as well as comprehensive regularization mechanism. Therefore, a new feature learning-based method is proposed to conduct impact load reconstruction and localization. The proposed method mainly includes two parts. The first part is designed to reconstruct impact load, named convolutional-recurrent encoder–decoder neural network (ED-CRNN). The other part is constructed to localize impact load, called deep convolutional-recurrent neural network (DCRNN). The ED-CRNN utilizes the one-dimensional (1-D) convolutional encoder–decoder to obtain low-dimension feature representations of input signals. Two long short-term memory (LSTM) layers and a bidirectional LSTM (BiLSTM) layer are uniformly distributed in this network to learn the relationship between input features and the output load in time steps. The DCRNN is constructed mainly by two 1-D convolutional neural network (CNN) layers and two BiLSTM layers to learn high-hidden-level spatial as well as temporal features. The fully connected layers are placed at the end to localize an impact load. The effectiveness of the proposed method was demonstrated by two numerical studies and two experiments. The results reveal that the proposed method has the ability to accurately and quickly reconstruct and localize the impact load of complex assembled structure. Furthermore, the performance of the DCRNN is related to the number of sensors and the architecture of the network. Meanwhile, the strategy of alternating layout is proposed to reduce the number of training locations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熹微发布了新的文献求助10
2秒前
流星完成签到,获得积分10
2秒前
4秒前
5秒前
shapvalue发布了新的文献求助10
6秒前
昏睡的半莲完成签到 ,获得积分20
7秒前
7秒前
石人达完成签到 ,获得积分10
8秒前
HYCT完成签到 ,获得积分10
10秒前
10秒前
11秒前
una发布了新的文献求助10
11秒前
shaco发布了新的文献求助10
12秒前
孙长胜完成签到,获得积分10
12秒前
wyr525完成签到,获得积分10
13秒前
14秒前
山楂看海完成签到,获得积分10
15秒前
tramp应助llzuo采纳,获得20
15秒前
17秒前
18秒前
SciGPT应助wyr525采纳,获得10
19秒前
不配.应助蓝波酱采纳,获得10
19秒前
小甘看世界完成签到,获得积分10
21秒前
轻松刚发布了新的文献求助10
22秒前
啊啊啊完成签到 ,获得积分10
23秒前
子不语完成签到,获得积分10
26秒前
27秒前
28秒前
brave heart完成签到,获得积分10
30秒前
30秒前
lujia关注了科研通微信公众号
32秒前
顾矜应助Leeny采纳,获得10
32秒前
32秒前
浮生发布了新的文献求助10
34秒前
淡dan完成签到,获得积分10
36秒前
39秒前
40秒前
无花果应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136151
求助须知:如何正确求助?哪些是违规求助? 2787065
关于积分的说明 7780419
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298945
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870