A feature learning-based method for impact load reconstruction and localization of the plate-rib assembled structure

深度学习 卷积神经网络 循环神经网络 计算机科学 特征学习 人工智能 特征工程 编码器 非线性系统 特征(语言学) 模式识别(心理学) 人工神经网络 算法 量子力学 操作系统 物理 哲学 语言学
作者
Tao Chen,Liang Guo,Andongzhe Duan,Hongli Gao,Tingting Feng,Yichen He
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:21 (4): 1590-1607 被引量:24
标识
DOI:10.1177/14759217211038065
摘要

Impact load is the load that machines frequently experienced in engineering applications. Its time-history reconstruction and localization are crucial for structural health monitoring and reliability analysis. However, when identifying random impact loads, conventional inversion methods usually do not perform well because of complex formula derivation, infeasibility of nonlinear structure, and ill-posed problem. Deep learning methods have great ability of feature learning and nonlinear representation as well as comprehensive regularization mechanism. Therefore, a new feature learning-based method is proposed to conduct impact load reconstruction and localization. The proposed method mainly includes two parts. The first part is designed to reconstruct impact load, named convolutional-recurrent encoder–decoder neural network (ED-CRNN). The other part is constructed to localize impact load, called deep convolutional-recurrent neural network (DCRNN). The ED-CRNN utilizes the one-dimensional (1-D) convolutional encoder–decoder to obtain low-dimension feature representations of input signals. Two long short-term memory (LSTM) layers and a bidirectional LSTM (BiLSTM) layer are uniformly distributed in this network to learn the relationship between input features and the output load in time steps. The DCRNN is constructed mainly by two 1-D convolutional neural network (CNN) layers and two BiLSTM layers to learn high-hidden-level spatial as well as temporal features. The fully connected layers are placed at the end to localize an impact load. The effectiveness of the proposed method was demonstrated by two numerical studies and two experiments. The results reveal that the proposed method has the ability to accurately and quickly reconstruct and localize the impact load of complex assembled structure. Furthermore, the performance of the DCRNN is related to the number of sensors and the architecture of the network. Meanwhile, the strategy of alternating layout is proposed to reduce the number of training locations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助DrYang采纳,获得10
1秒前
两米七发布了新的文献求助20
1秒前
1秒前
科研通AI5应助乐666采纳,获得10
2秒前
爱lx发布了新的文献求助10
3秒前
怕黑的静蕾应助Benliu采纳,获得10
3秒前
大吱吱完成签到,获得积分10
3秒前
4秒前
上官若男应助清修采纳,获得10
4秒前
5秒前
6秒前
博修发布了新的文献求助30
6秒前
Bryan应助anna采纳,获得10
7秒前
巴斯光年发布了新的文献求助10
8秒前
齐忆幽完成签到,获得积分10
10秒前
10秒前
黄金矿工完成签到,获得积分20
12秒前
13秒前
ludwig完成签到,获得积分10
14秒前
天天快乐应助Tao采纳,获得10
14秒前
wangxiaoer完成签到,获得积分10
15秒前
斯文败类应助暖阳采纳,获得10
15秒前
饼藏发布了新的文献求助10
16秒前
52hERTZ发布了新的文献求助10
16秒前
nebula应助cancan采纳,获得10
16秒前
17秒前
17秒前
纵然完成签到,获得积分10
18秒前
飞翔的梦发布了新的文献求助10
19秒前
蓝天白云发布了新的文献求助30
19秒前
yyc完成签到,获得积分10
20秒前
21秒前
xiaochen发布了新的文献求助10
22秒前
edenchestnut给edenchestnut的求助进行了留言
22秒前
藏沙完成签到 ,获得积分10
23秒前
24秒前
24秒前
25秒前
26秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967841
求助须知:如何正确求助?哪些是违规求助? 3512958
关于积分的说明 11165751
捐赠科研通 3248019
什么是DOI,文献DOI怎么找? 1794087
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578