Unsupervised Hyperspectral Image Change Detection via Deep Learning Self-Generated Credible Labels

高光谱成像 计算机科学 人工智能 模式识别(心理学) 卷积神经网络 变更检测 深度学习 图像(数学) 维数之咒 相似性(几何)
作者
Qiuxia Li,Hang Gong,Haishan Dai,Chunlai Li,Zhiping He,Wenjing Wang,Yusen Feng,Feng Han,Abudusalamu Tuniyazi,Haoyang Li,Tingkui Mu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 9012-9024 被引量:22
标识
DOI:10.1109/jstars.2021.3108777
摘要

Change detection (CD) aims to identify differences in scenes observed at different times. Hyperspectral image (HSI) is preferred for the understanding of land surface changes, since it can provide essential and unique features for CD. However, due to the high-dimensionality and limited data, the HSI-CD task is challenged. While model-driven CD methods are hard to achieve high accuracy due to the weak detection performance for fine changes, data-driven CD methods are hard to be generalized due to the limited data sets. The state-of-art method is to combine a single model-driven method with a data-driven convolutional neural network (CNN). Wherein the pseudo-labels can be generated automatically by the model-driven method and then fed to CNN for training. However, the final detection accuracy is limited by the model-driven method which produces pseudo-labels with one-sidedness and low accuracy. Therefore, the generation of credible pseudo-labels is anticipated and crucial for such a combination. Herein, a novel strategy, the combination of two complementary model-driven methods, structural similarity (SSIM) and change vector analysis (CVA), is proposed to generate credible labels for training a subsequent CNN. The results show that the final accuracy is higher than that of SSIM and CVA. The main contributions of this paper are threefold: 1) a new paradigm for generating credible labels is proposed. 2) SSIM is used for the first time for HSI-CD tasks. 3) an unsupervised end-to-end framework is presented for the HSI-CD. Experimental results demonstrate the effectiveness of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tengyve完成签到,获得积分10
2秒前
酷炫蛋挞完成签到 ,获得积分10
3秒前
candy6663339完成签到,获得积分10
3秒前
回首不再是少年完成签到,获得积分0
5秒前
酷酷一笑完成签到,获得积分10
7秒前
天天快乐应助科研通管家采纳,获得10
13秒前
isedu完成签到,获得积分10
13秒前
U9A完成签到,获得积分10
14秒前
一亩蔬菜完成签到,获得积分10
17秒前
Lucas应助科研人一枚采纳,获得10
23秒前
hi完成签到,获得积分10
24秒前
快乐的芷巧完成签到,获得积分10
25秒前
酷酷小子完成签到 ,获得积分10
27秒前
35秒前
巴山完成签到,获得积分10
37秒前
无花果应助ly采纳,获得10
37秒前
loren313完成签到,获得积分0
41秒前
玄学小生完成签到 ,获得积分10
43秒前
小梦完成签到,获得积分10
44秒前
白桃完成签到 ,获得积分10
46秒前
王世卉完成签到,获得积分10
47秒前
湖以完成签到 ,获得积分10
51秒前
清脆的靖仇完成签到,获得积分10
57秒前
lixiaoya完成签到,获得积分10
58秒前
小洪俊熙完成签到,获得积分10
58秒前
nicolaslcq完成签到,获得积分10
1分钟前
研友_Z119gZ完成签到 ,获得积分10
1分钟前
Cold-Drink-Shop完成签到,获得积分10
1分钟前
1分钟前
ly发布了新的文献求助10
1分钟前
权小夏完成签到 ,获得积分10
1分钟前
帅气的宽完成签到 ,获得积分10
1分钟前
小丸子完成签到 ,获得积分10
1分钟前
634301059完成签到 ,获得积分10
2分钟前
George完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
七月完成签到,获得积分10
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167340
捐赠科研通 3248714
什么是DOI,文献DOI怎么找? 1794453
邀请新用户注册赠送积分活动 875065
科研通“疑难数据库(出版商)”最低求助积分说明 804664