已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unsupervised Hyperspectral Image Change Detection via Deep Learning Self-Generated Credible Labels

高光谱成像 计算机科学 人工智能 模式识别(心理学) 卷积神经网络 变更检测 深度学习 图像(数学) 维数之咒 相似性(几何)
作者
Qiuxia Li,Hang Gong,Haishan Dai,Chunlai Li,Zhiping He,Wenjing Wang,Yusen Feng,Feng Han,Abudusalamu Tuniyazi,Haoyang Li,Tingkui Mu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 9012-9024 被引量:22
标识
DOI:10.1109/jstars.2021.3108777
摘要

Change detection (CD) aims to identify differences in scenes observed at different times. Hyperspectral image (HSI) is preferred for the understanding of land surface changes, since it can provide essential and unique features for CD. However, due to the high-dimensionality and limited data, the HSI-CD task is challenged. While model-driven CD methods are hard to achieve high accuracy due to the weak detection performance for fine changes, data-driven CD methods are hard to be generalized due to the limited data sets. The state-of-art method is to combine a single model-driven method with a data-driven convolutional neural network (CNN). Wherein the pseudo-labels can be generated automatically by the model-driven method and then fed to CNN for training. However, the final detection accuracy is limited by the model-driven method which produces pseudo-labels with one-sidedness and low accuracy. Therefore, the generation of credible pseudo-labels is anticipated and crucial for such a combination. Herein, a novel strategy, the combination of two complementary model-driven methods, structural similarity (SSIM) and change vector analysis (CVA), is proposed to generate credible labels for training a subsequent CNN. The results show that the final accuracy is higher than that of SSIM and CVA. The main contributions of this paper are threefold: 1) a new paradigm for generating credible labels is proposed. 2) SSIM is used for the first time for HSI-CD tasks. 3) an unsupervised end-to-end framework is presented for the HSI-CD. Experimental results demonstrate the effectiveness of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎啤酒发布了新的文献求助10
1秒前
xiaofeiyan发布了新的文献求助20
2秒前
康康发布了新的文献求助10
2秒前
2秒前
荃芏完成签到,获得积分10
3秒前
4秒前
4秒前
爆米花应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
你今天学了多少完成签到 ,获得积分10
7秒前
7秒前
李爱国应助kmkm采纳,获得10
8秒前
8秒前
西瓜发布了新的文献求助10
9秒前
9秒前
xubee发布了新的文献求助10
9秒前
源源源完成签到 ,获得积分0
9秒前
SiO2完成签到 ,获得积分10
9秒前
SIDNA关注了科研通微信公众号
10秒前
小左发布了新的文献求助30
11秒前
大秦发布了新的文献求助10
12秒前
哈哈哈哈发布了新的文献求助10
12秒前
幽梦挽歌发布了新的文献求助10
14秒前
谦让幻珊发布了新的文献求助10
14秒前
17秒前
Thien发布了新的文献求助10
18秒前
小牧鱼完成签到,获得积分10
20秒前
ED应助U9A采纳,获得10
20秒前
25秒前
25秒前
29秒前
ASH完成签到 ,获得积分10
32秒前
32秒前
焦立超发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976455
求助须知:如何正确求助?哪些是违规求助? 3520548
关于积分的说明 11203850
捐赠科研通 3257210
什么是DOI,文献DOI怎么找? 1798648
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806539