Details of Single-Molecule Force Spectroscopy Data Decoded by a Network-Based Automatic Clustering Algorithm

力谱学 聚类分析 原子力显微镜 分子间力 分子 纳米技术 分子内力 生物系统 算法 材料科学 计算机科学 生物物理学 化学物理 化学 人工智能 生物 立体化学 有机化学
作者
Hui-Min Cheng,Jun Yu,Zhen Wang,Ping Ma,Cunlan Guo,Bin Wang,Wenxuan Zhong,Bingqian Xu
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:125 (34): 9660-9667 被引量:1
标识
DOI:10.1021/acs.jpcb.1c03552
摘要

Atomic force microscopy-single-molecule force spectroscopy (AFM-SMFS) is a powerful methodology to probe intermolecular and intramolecular interactions in biological systems because of its operability in physiological conditions, facile and rapid sample preparation, versatile molecular manipulation, and combined functionality with high-resolution imaging. Since a huge number of AFM-SMFS force-distance curves are collected to avoid human bias and errors and to save time, numerous algorithms have been developed to analyze the AFM-SMFS curves. Nevertheless, there is still a need to develop new algorithms for the analysis of AFM-SMFS data since the current algorithms cannot specify an unbinding force to a corresponding/each binding site due to the lack of networking functionality to model the relationship between the unbinding forces. To address this challenge, herein, we develop an unsupervised method, i.e., a network-based automatic clustering algorithm (NASA), to decode the details of specific molecules, e.g., the unbinding force of each binding site, given the input of AFM-SMFS curves. Using the interaction of heparan sulfate (HS)-antithrombin (AT) on different endothelial cell surfaces as a model system, we demonstrate that NASA is able to automatically detect the peak and calculate the unbinding force. More importantly, NASA successfully identifies three unbinding force clusters, which could belong to three different binding sites, for both Ext1f/f and Ndst1f/f cell lines. NASA has great potential to be applied either readily or slightly modified to other AFM-based SMFS measurements that result in "saw-tooth"-shaped force-distance curves showing jumps related to the force unbinding, such as antibody-antigen interaction and DNA-protein interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linjiaxin完成签到,获得积分10
刚刚
uniphoton完成签到,获得积分10
1秒前
1秒前
小蘑菇应助ahxb采纳,获得10
1秒前
赤枫彤云发布了新的文献求助10
1秒前
能干的月光完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
Tushar完成签到,获得积分10
2秒前
linjiaxin发布了新的文献求助10
3秒前
May应助露露采纳,获得20
4秒前
思源应助研白采纳,获得10
4秒前
K先生完成签到,获得积分10
4秒前
123关闭了123文献求助
7秒前
和谐之玉发布了新的文献求助200
9秒前
11秒前
12秒前
lili完成签到,获得积分10
13秒前
鱼仔发布了新的文献求助10
14秒前
17秒前
17秒前
研白发布了新的文献求助10
18秒前
皮皮完成签到 ,获得积分10
21秒前
宋子虎发布了新的文献求助10
21秒前
linda关注了科研通微信公众号
22秒前
鱼仔完成签到,获得积分10
24秒前
25秒前
兴奋的定帮完成签到 ,获得积分0
26秒前
赘婿应助刘刘大顺采纳,获得10
27秒前
司空元正完成签到 ,获得积分10
27秒前
Owen应助liuzengzhang666采纳,获得10
27秒前
xiejinhui发布了新的文献求助10
28秒前
雪鸽鸽完成签到,获得积分10
31秒前
传奇3应助xiejinhui采纳,获得10
33秒前
刻苦羽毛完成签到,获得积分10
34秒前
虚心的芹发布了新的文献求助10
34秒前
8R60d8应助您好刘皇叔采纳,获得10
35秒前
35秒前
37秒前
37秒前
小小美少女完成签到 ,获得积分10
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961022
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134887
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790309
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150