Details of Single-Molecule Force Spectroscopy Data Decoded by a Network-Based Automatic Clustering Algorithm

力谱学 聚类分析 原子力显微镜 分子间力 分子 纳米技术 分子内力 生物系统 算法 材料科学 计算机科学 生物物理学 化学 人工智能 生物 立体化学 有机化学
作者
Huimin Cheng,Jun Yu,Zhen Wang,Ping Ma,Cunlan Guo,Bin Wang,Wenxuan Zhong,Bingqian Xu
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:125 (34): 9660-9667 被引量:4
标识
DOI:10.1021/acs.jpcb.1c03552
摘要

Atomic force microscopy-single-molecule force spectroscopy (AFM-SMFS) is a powerful methodology to probe intermolecular and intramolecular interactions in biological systems because of its operability in physiological conditions, facile and rapid sample preparation, versatile molecular manipulation, and combined functionality with high-resolution imaging. Since a huge number of AFM-SMFS force-distance curves are collected to avoid human bias and errors and to save time, numerous algorithms have been developed to analyze the AFM-SMFS curves. Nevertheless, there is still a need to develop new algorithms for the analysis of AFM-SMFS data since the current algorithms cannot specify an unbinding force to a corresponding/each binding site due to the lack of networking functionality to model the relationship between the unbinding forces. To address this challenge, herein, we develop an unsupervised method, i.e., a network-based automatic clustering algorithm (NASA), to decode the details of specific molecules, e.g., the unbinding force of each binding site, given the input of AFM-SMFS curves. Using the interaction of heparan sulfate (HS)-antithrombin (AT) on different endothelial cell surfaces as a model system, we demonstrate that NASA is able to automatically detect the peak and calculate the unbinding force. More importantly, NASA successfully identifies three unbinding force clusters, which could belong to three different binding sites, for both Ext1f/f and Ndst1f/f cell lines. NASA has great potential to be applied either readily or slightly modified to other AFM-based SMFS measurements that result in "saw-tooth"-shaped force-distance curves showing jumps related to the force unbinding, such as antibody-antigen interaction and DNA-protein interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程晗发布了新的文献求助10
刚刚
刚刚
25完成签到,获得积分10
1秒前
1秒前
dfhh发布了新的文献求助10
2秒前
2秒前
嘿嘿发布了新的文献求助10
3秒前
4秒前
4秒前
天天发布了新的文献求助10
4秒前
Akim应助struggling2026采纳,获得10
4秒前
nini完成签到,获得积分10
4秒前
羲和发布了新的文献求助10
5秒前
XX发布了新的文献求助10
5秒前
5秒前
罗C完成签到,获得积分10
5秒前
5秒前
6秒前
完美世界应助一二采纳,获得10
6秒前
6秒前
mrpy发布了新的文献求助30
6秒前
冷艳冷安完成签到 ,获得积分10
6秒前
6秒前
View完成签到,获得积分10
6秒前
7秒前
耿耿于怀完成签到,获得积分10
7秒前
wenwenerya发布了新的文献求助10
8秒前
8秒前
酷炫的荧完成签到,获得积分10
8秒前
yuyuyu发布了新的文献求助10
8秒前
8秒前
9秒前
英俊的铭应助健忘捕采纳,获得10
9秒前
软软萌萌发布了新的文献求助10
10秒前
科研通AI2S应助张一诺021222采纳,获得10
10秒前
KinaC02完成签到,获得积分10
11秒前
李金奥发布了新的文献求助10
12秒前
12秒前
26hood关注了科研通微信公众号
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625062
求助须知:如何正确求助?哪些是违规求助? 4710920
关于积分的说明 14953055
捐赠科研通 4778964
什么是DOI,文献DOI怎么找? 2553547
邀请新用户注册赠送积分活动 1515490
关于科研通互助平台的介绍 1475770