已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification of Iron Metabolism-Related Genes as Prognostic Indicators for Lower-Grade Glioma

胶质瘤 生物 列线图 肿瘤科 异柠檬酸脱氢酶 比例危险模型 内科学 基因 DNA甲基化 IDH1 癌症研究 医学 遗传学 基因表达 突变 生物化学
作者
Shenbin Xu,Zefeng Wang,Juan Ye,Shuhao Mei,Jianmin Zhang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:21
标识
DOI:10.3389/fonc.2021.729103
摘要

Lower-grade glioma (LGG) is characterized by genetic and transcriptional heterogeneity, and a dismal prognosis. Iron metabolism is considered central for glioma tumorigenesis, tumor progression and tumor microenvironment, although key iron metabolism-related genes are unclear. Here we developed and validated an iron metabolism-related gene signature LGG prognosis. RNA-sequence and clinicopathological data from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) were downloaded. Prognostic iron metabolism-related genes were screened and used to construct a risk-score model via differential gene expression analysis, univariate Cox analysis, and the Least Absolute Shrinkage and Selection Operator (LASSO)-regression algorithm. All LGG patients were stratified into high- and low-risk groups, based on the risk score. The prognostic significance of the risk-score model in the TCGA and CGGA cohorts was evaluated with Kaplan-Meier (KM) survival and receiver operating characteristic (ROC) curve analysis. Risk- score distributions in subgroups were stratified by age, gender, the World Health Organization (WHO) grade, isocitrate dehydrogenase 1 ( IDH1 ) mutation status, the O 6 ‐methylguanine‐DNA methyl‐transferase ( MGMT ) promoter-methylation status, and the 1p/19q co-deletion status. Furthermore, a nomogram model with a risk score was developed, and its predictive performance was validated with the TCGA and CGGA cohorts. Additionally, the gene set enrichment analysis (GSEA) identified signaling pathways and pathological processes enriched in the high-risk group. Finally, immune infiltration and immune checkpoint analysis were utilized to investigate the tumor microenvironment characteristics related to the risk score. We identified a prognostic 15-gene iron metabolism-related signature and constructed a risk-score model. High risk scores were associated with an age of > 40, wild-type IDH1 , a WHO grade of III, an unmethylated MGMT promoter, and 1p/19q non-codeletion. ROC analysis indicated that the risk-score model accurately predicted 1-, 3-, and 5-year overall survival rates of LGG patients in the both TCGA and CGGA cohorts. KM analysis showed that the high-risk group had a much lower overall survival than the low-risk group ( P < 0.0001). The nomogram model showed a strong ability to predict the overall survival of LGG patients in the TCGA and CGGA cohorts. GSEA analysis indicated that inflammatory responses, tumor-associated pathways, and pathological processes were enriched in high-risk group. Moreover, a high risk score correlated with the infiltration immune cells (dendritic cells, macrophages, CD4+ T cells, and B cells) and expression of immune checkpoint (PD1, PDL1, TIM3, and CD48). Our prognostic model was based on iron metabolism-related genes in LGG, can potentially aid in LGG prognosis, and provides potential targets against gliomas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余红完成签到 ,获得积分10
刚刚
1秒前
2秒前
2秒前
俯冲食堂完成签到,获得积分10
2秒前
5秒前
Ganann发布了新的文献求助10
6秒前
奶酪芝士发布了新的文献求助10
6秒前
Claire_Xiang应助RiccaChen采纳,获得20
6秒前
7秒前
wy.he应助聪明的大树采纳,获得10
7秒前
卓头OvQ发布了新的文献求助10
7秒前
ontheway发布了新的文献求助10
9秒前
平淡冷发布了新的文献求助10
12秒前
过昭关发布了新的文献求助10
12秒前
小马甲应助烤冷面采纳,获得10
12秒前
香蕉觅云应助坚强的初夏采纳,获得10
13秒前
14秒前
15秒前
碧蓝靳完成签到,获得积分10
15秒前
16秒前
17秒前
今后应助丁浩添采纳,获得10
17秒前
17秒前
大个应助开朗的紫萱采纳,获得10
18秒前
dadawang发布了新的文献求助10
18秒前
HJJHJH发布了新的文献求助20
18秒前
WZT发布了新的文献求助10
19秒前
20秒前
20秒前
Yu发布了新的文献求助10
22秒前
23秒前
聊自明媚发布了新的文献求助30
23秒前
过昭关完成签到,获得积分10
24秒前
星期8完成签到,获得积分10
24秒前
充电宝应助HJJHJH采纳,获得10
25秒前
26秒前
28秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763257
求助须知:如何正确求助?哪些是违规求助? 5539799
关于积分的说明 15404550
捐赠科研通 4899105
什么是DOI,文献DOI怎么找? 2635329
邀请新用户注册赠送积分活动 1583419
关于科研通互助平台的介绍 1538503