DynSTGAT

计算机科学 利用 合并(版本控制) 交叉口(航空) 空间分析 卷积神经网络 图形 数据挖掘 理论计算机科学 人工智能 情报检索 计算机安全 遥感 地质学 工程类 航空航天工程
作者
Libing Wu,Wang Min,Dan Wu,Jia Wu
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.1145/3459637.3482254
摘要

Adaptive traffic signal control plays a significant role in the construction of smart cities. This task is challenging because of many essential factors, such as cooperation among neighboring intersections and dynamic traffic scenarios. First, to facilitate cooperation of traffic signals, existing work adopts graph neural networks to incorporate the temporal and spatial influences of the surrounding intersections into the target intersection, where spatial-temporal information is used separately. However, one drawback of these methods is that the spatial-temporal correlations are not adequately exploited to obtain a better control scheme. Second, in a dynamic traffic environment, the historical state of the intersection is also critical for predicting future signal switching. Previous work mainly solves this problem using the current intersection's state, neglecting the fact that traffic flow is continuously changing both spatially and temporally and does not handle the historical state. In this paper, we propose a novel neural network framework named DynSTGAT, which integrates dynamic historical state into a new spatial-temporal graph attention network to address the above two problems. More specifically, our DynSTGAT model employs a novel multi-head graph attention mechanism, which aims to adequately exploit the joint relations of spatial-temporal information. Then, to efficiently utilize the historical state information of the intersection, we design a sequence model with the temporal convolutional network (TCN) to capture the historical information and further merge it with the spatial information to improve its performance. Extensive experiments conducted in the multi-intersection scenario on synthetic data and real-world data confirm that our method can achieve superior performance in travel time and throughput against the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
LYB吕发布了新的文献求助10
2秒前
栗子鱼发布了新的文献求助10
3秒前
刘晓倩发布了新的文献求助10
4秒前
kelly发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
Andrew发布了新的文献求助20
7秒前
8秒前
大个应助俭朴问凝采纳,获得10
8秒前
Lucas应助cube半肥半瘦采纳,获得10
9秒前
小白果果完成签到,获得积分10
10秒前
adelalady完成签到,获得积分10
11秒前
肉肉完成签到,获得积分10
11秒前
所所应助12334采纳,获得10
11秒前
夜月残阳完成签到,获得积分10
12秒前
渐日落发布了新的文献求助10
12秒前
redsen发布了新的文献求助10
14秒前
赘婿应助简单采纳,获得10
15秒前
15秒前
sssss完成签到,获得积分20
16秒前
same完成签到,获得积分20
16秒前
18秒前
kfuiewfowe完成签到,获得积分10
19秒前
xiaoshu完成签到,获得积分10
19秒前
19秒前
可爱的函函应助雷雷采纳,获得10
19秒前
石鑫完成签到 ,获得积分10
20秒前
gg发布了新的文献求助10
20秒前
21秒前
不配.应助KKK采纳,获得10
21秒前
科研顺利给科研顺利的求助进行了留言
21秒前
Tao2023发布了新的文献求助30
21秒前
22秒前
12334发布了新的文献求助10
22秒前
23秒前
诸岩发布了新的文献求助10
23秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137994
求助须知:如何正确求助?哪些是违规求助? 2788986
关于积分的说明 7789404
捐赠科研通 2445432
什么是DOI,文献DOI怎么找? 1300328
科研通“疑难数据库(出版商)”最低求助积分说明 625900
版权声明 601046