DynSTGAT

计算机科学 利用 合并(版本控制) 交叉口(航空) 空间分析 卷积神经网络 图形 数据挖掘 理论计算机科学 人工智能 地理 情报检索 计算机安全 遥感 地图学
作者
Libing Wu,Min Wang,Dan Wu,Jia Wu
出处
期刊:Cornell University - arXiv 卷期号:: 2150-2159 被引量:17
标识
DOI:10.1145/3459637.3482254
摘要

Adaptive traffic signal control plays a significant role in the construction of smart cities. This task is challenging because of many essential factors, such as cooperation among neighboring intersections and dynamic traffic scenarios. First, to facilitate cooperation of traffic signals, existing work adopts graph neural networks to incorporate the temporal and spatial influences of the surrounding intersections into the target intersection, where spatial-temporal information is used separately. However, one drawback of these methods is that the spatial-temporal correlations are not adequately exploited to obtain a better control scheme. Second, in a dynamic traffic environment, the historical state of the intersection is also critical for predicting future signal switching. Previous work mainly solves this problem using the current intersection's state, neglecting the fact that traffic flow is continuously changing both spatially and temporally and does not handle the historical state. In this paper, we propose a novel neural network framework named DynSTGAT, which integrates dynamic historical state into a new spatial-temporal graph attention network to address the above two problems. More specifically, our DynSTGAT model employs a novel multi-head graph attention mechanism, which aims to adequately exploit the joint relations of spatial-temporal information. Then, to efficiently utilize the historical state information of the intersection, we design a sequence model with the temporal convolutional network (TCN) to capture the historical information and further merge it with the spatial information to improve its performance. Extensive experiments conducted in the multi-intersection scenario on synthetic data and real-world data confirm that our method can achieve superior performance in travel time and throughput against the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗晓倩发布了新的文献求助10
刚刚
刚刚
漂亮幻莲完成签到,获得积分10
2秒前
2秒前
2秒前
桐桐应助板凳采纳,获得10
4秒前
漂亮幻莲发布了新的文献求助10
5秒前
slotus发布了新的文献求助10
6秒前
研友_564485完成签到,获得积分10
6秒前
大气的玉米完成签到,获得积分10
8秒前
9秒前
CC完成签到,获得积分10
10秒前
xq1699应助沉默冬卉采纳,获得10
11秒前
今后应助优秀的枕头采纳,获得10
11秒前
淡定的往事完成签到,获得积分10
12秒前
ding应助ada采纳,获得10
12秒前
李y梅子发布了新的文献求助10
13秒前
13秒前
14秒前
16秒前
16秒前
葡萄爱吃荔枝完成签到,获得积分10
17秒前
陈晓迪1992发布了新的文献求助10
17秒前
Zard发布了新的文献求助10
18秒前
妮儿发布了新的文献求助20
19秒前
颢懿完成签到 ,获得积分10
19秒前
慧喆完成签到 ,获得积分10
21秒前
ccchen完成签到,获得积分10
21秒前
wangdh发布了新的文献求助10
22秒前
24秒前
安详念蕾完成签到,获得积分10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
情怀应助科研通管家采纳,获得10
24秒前
科研通AI2S应助健忘的寻菱采纳,获得10
24秒前
24秒前
绝情继父应助科研通管家采纳,获得10
24秒前
华仔应助科研通管家采纳,获得10
25秒前
CipherSage应助科研通管家采纳,获得10
25秒前
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993519
求助须知:如何正确求助?哪些是违规求助? 3534225
关于积分的说明 11265055
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806274
邀请新用户注册赠送积分活动 883084
科研通“疑难数据库(出版商)”最低求助积分说明 809710