DynSTGAT

计算机科学 利用 合并(版本控制) 交叉口(航空) 空间分析 卷积神经网络 图形 数据挖掘 理论计算机科学 人工智能 地理 情报检索 计算机安全 地图学 遥感
作者
Libing Wu,Min Wang,Dan Wu,Jia Wu
出处
期刊:Cornell University - arXiv 卷期号:: 2150-2159 被引量:17
标识
DOI:10.1145/3459637.3482254
摘要

Adaptive traffic signal control plays a significant role in the construction of smart cities. This task is challenging because of many essential factors, such as cooperation among neighboring intersections and dynamic traffic scenarios. First, to facilitate cooperation of traffic signals, existing work adopts graph neural networks to incorporate the temporal and spatial influences of the surrounding intersections into the target intersection, where spatial-temporal information is used separately. However, one drawback of these methods is that the spatial-temporal correlations are not adequately exploited to obtain a better control scheme. Second, in a dynamic traffic environment, the historical state of the intersection is also critical for predicting future signal switching. Previous work mainly solves this problem using the current intersection's state, neglecting the fact that traffic flow is continuously changing both spatially and temporally and does not handle the historical state. In this paper, we propose a novel neural network framework named DynSTGAT, which integrates dynamic historical state into a new spatial-temporal graph attention network to address the above two problems. More specifically, our DynSTGAT model employs a novel multi-head graph attention mechanism, which aims to adequately exploit the joint relations of spatial-temporal information. Then, to efficiently utilize the historical state information of the intersection, we design a sequence model with the temporal convolutional network (TCN) to capture the historical information and further merge it with the spatial information to improve its performance. Extensive experiments conducted in the multi-intersection scenario on synthetic data and real-world data confirm that our method can achieve superior performance in travel time and throughput against the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tk完成签到,获得积分10
刚刚
刚刚
研友_LN7bvn完成签到,获得积分10
刚刚
O泡发布了新的文献求助10
刚刚
文静雨兰发布了新的文献求助10
1秒前
木木完成签到,获得积分10
2秒前
小吃完成签到,获得积分10
2秒前
2秒前
无花果应助ruogu7采纳,获得10
2秒前
2秒前
调皮的败应助jiangmax采纳,获得10
2秒前
3秒前
QingS应助lichaofan采纳,获得10
3秒前
dx3906发布了新的文献求助10
3秒前
3秒前
smottom应助莫默采纳,获得10
3秒前
合适的天完成签到,获得积分10
5秒前
FashionBoy应助lxl采纳,获得10
5秒前
张张完成签到,获得积分20
5秒前
brd完成签到,获得积分10
6秒前
6秒前
esbd发布了新的文献求助10
7秒前
李爱国应助优美糖豆采纳,获得10
7秒前
ckj完成签到,获得积分10
7秒前
jdndbd关注了科研通微信公众号
7秒前
搜集达人应助范范采纳,获得30
7秒前
sln发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
桐桐应助张张采纳,获得10
9秒前
QDDYR完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
11完成签到,获得积分10
11秒前
11秒前
Ethereal完成签到,获得积分10
11秒前
樱桃汽水怪兽完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776350
求助须知:如何正确求助?哪些是违规求助? 5628713
关于积分的说明 15442059
捐赠科研通 4908468
什么是DOI,文献DOI怎么找? 2641217
邀请新用户注册赠送积分活动 1589167
关于科研通互助平台的介绍 1543851