DynSTGAT

计算机科学 利用 合并(版本控制) 交叉口(航空) 空间分析 卷积神经网络 图形 数据挖掘 理论计算机科学 人工智能 地理 情报检索 计算机安全 地图学 遥感
作者
Libing Wu,Min Wang,Dan Wu,Jia Wu
出处
期刊:Cornell University - arXiv 卷期号:: 2150-2159 被引量:17
标识
DOI:10.1145/3459637.3482254
摘要

Adaptive traffic signal control plays a significant role in the construction of smart cities. This task is challenging because of many essential factors, such as cooperation among neighboring intersections and dynamic traffic scenarios. First, to facilitate cooperation of traffic signals, existing work adopts graph neural networks to incorporate the temporal and spatial influences of the surrounding intersections into the target intersection, where spatial-temporal information is used separately. However, one drawback of these methods is that the spatial-temporal correlations are not adequately exploited to obtain a better control scheme. Second, in a dynamic traffic environment, the historical state of the intersection is also critical for predicting future signal switching. Previous work mainly solves this problem using the current intersection's state, neglecting the fact that traffic flow is continuously changing both spatially and temporally and does not handle the historical state. In this paper, we propose a novel neural network framework named DynSTGAT, which integrates dynamic historical state into a new spatial-temporal graph attention network to address the above two problems. More specifically, our DynSTGAT model employs a novel multi-head graph attention mechanism, which aims to adequately exploit the joint relations of spatial-temporal information. Then, to efficiently utilize the historical state information of the intersection, we design a sequence model with the temporal convolutional network (TCN) to capture the historical information and further merge it with the spatial information to improve its performance. Extensive experiments conducted in the multi-intersection scenario on synthetic data and real-world data confirm that our method can achieve superior performance in travel time and throughput against the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助哑巴和喇叭采纳,获得10
刚刚
cloverdown发布了新的文献求助10
1秒前
LX完成签到,获得积分10
1秒前
1秒前
YH发布了新的文献求助10
2秒前
韩悦发布了新的文献求助10
3秒前
3秒前
嘿嘿发布了新的文献求助10
3秒前
七友发布了新的文献求助10
3秒前
傲娇雁风发布了新的文献求助10
4秒前
酷波er应助SCO采纳,获得10
4秒前
饼饼发布了新的文献求助10
4秒前
我是老大应助关我屁事采纳,获得10
5秒前
5秒前
小蘑菇应助臭屁大王采纳,获得10
5秒前
无极微光应助淘淘采纳,获得20
6秒前
黑色幽默发布了新的文献求助10
6秒前
7秒前
杜晶完成签到,获得积分10
7秒前
喜悦向日葵完成签到 ,获得积分10
7秒前
多多发布了新的文献求助10
7秒前
恋晨完成签到 ,获得积分10
8秒前
cloverdown完成签到,获得积分10
8秒前
18746005898发布了新的文献求助10
8秒前
焦爽完成签到,获得积分20
8秒前
科学低调修仙完成签到,获得积分10
8秒前
论文顺利发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
yyy完成签到 ,获得积分20
10秒前
11秒前
11秒前
蠢宝贝发布了新的文献求助10
12秒前
搜集达人应助ANKAR采纳,获得10
12秒前
12秒前
13秒前
SciGPT应助大碗采纳,获得10
13秒前
13秒前
脑洞疼应助甜心妮采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512726
求助须知:如何正确求助?哪些是违规求助? 4607156
关于积分的说明 14503411
捐赠科研通 4542602
什么是DOI,文献DOI怎么找? 2489110
邀请新用户注册赠送积分活动 1471198
关于科研通互助平台的介绍 1443233