Intelligent Delay-Aware Partial Computing Task Offloading for Multiuser Industrial Internet of Things Through Edge Computing

计算机科学 移动边缘计算 服务器 任务(项目管理) 计算卸载 分布式计算 强化学习 边缘计算 计算机网络 GSM演进的增强数据速率 人工智能 经济 管理
作者
Xiaoheng Deng,Jian Yin,Peiyuan Guan,Naixue Xiong,Lan Zhang,Shahid Mumtaz
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (4): 2954-2966 被引量:144
标识
DOI:10.1109/jiot.2021.3123406
摘要

The development of Industrial Internet of Things (IIoT) and Industry 4.0 has completely changed the traditional manufacturing industry. Intelligent IIoT technology usually involves a large number of intensive computing tasks. Resource-constrained IIoT devices often cannot meet the real-time requirements of these tasks. As a promising paradigm, the mobile-edge computing (MEC) system migrates the computation intensive tasks from resource-constrained IIoT devices to nearby MEC servers, thereby obtaining lower delay and energy consumption. However, considering the varying channel conditions as well as the distinct delay requirements for various computing tasks, it is challenging to coordinate the computing task offloading among multiple users. In this article, we propose an autonomous partial offloading system for delay-sensitive computation tasks in multiuser IIoT MEC systems. Our goal is to provide offloading services with minimum delay for better Quality of Service (QoS). Enlighten by the recent advancement of reinforcement learning (RL), we propose two RL-based offloading strategies to automatically optimize the delay performance. Specifically, we first implement the $Q$ -learning algorithm to provide a discrete partial offloading decision. Then, to further optimize the system performance with more flexible task offloading, the offloading decisions are given as continuous based on deep deterministic policy gradient (DDPG). The simulation results show that the $Q$ -learning scheme reduces the delay by 23%, and the DDPG scheme reduces the delay by 30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Dharma_Bums发布了新的文献求助10
2秒前
Tianping完成签到,获得积分10
2秒前
科研通AI6应助元素分希怡采纳,获得10
2秒前
hhh发布了新的文献求助10
3秒前
JACY完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
Akim应助戴苏采纳,获得10
5秒前
潦草小狗完成签到 ,获得积分10
5秒前
5秒前
科研通AI6应助HUYAOWEI采纳,获得10
6秒前
Tianping发布了新的文献求助10
6秒前
DH完成签到,获得积分10
7秒前
周花花完成签到 ,获得积分10
7秒前
SciGPT应助咯咚采纳,获得10
7秒前
7秒前
9秒前
zhouzhou完成签到,获得积分10
10秒前
李健的小迷弟应助123456qi采纳,获得10
11秒前
星期8发布了新的文献求助10
12秒前
大方的云朵完成签到,获得积分10
13秒前
14秒前
CodeCraft应助zhouzhou采纳,获得10
14秒前
求索发布了新的文献求助10
14秒前
JamesPei应助科研通管家采纳,获得10
15秒前
ding应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
asdfzxcv应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得40
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
16秒前
小马甲应助qianqian采纳,获得10
16秒前
qq应助科研通管家采纳,获得10
16秒前
asdfzxcv应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655668
求助须知:如何正确求助?哪些是违规求助? 4799897
关于积分的说明 15073450
捐赠科研通 4814035
什么是DOI,文献DOI怎么找? 2575522
邀请新用户注册赠送积分活动 1530862
关于科研通互助平台的介绍 1489554