Intelligent Delay-Aware Partial Computing Task Offloading for Multiuser Industrial Internet of Things Through Edge Computing

计算机科学 移动边缘计算 服务器 任务(项目管理) 计算卸载 分布式计算 强化学习 边缘计算 计算机网络 GSM演进的增强数据速率 人工智能 经济 管理
作者
Xiaoheng Deng,Jian Yin,Peiyuan Guan,Naixue Xiong,Lan Zhang,Shahid Mumtaz
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (4): 2954-2966 被引量:120
标识
DOI:10.1109/jiot.2021.3123406
摘要

The development of Industrial Internet of Things (IIoT) and Industry 4.0 has completely changed the traditional manufacturing industry. Intelligent IIoT technology usually involves a large number of intensive computing tasks. Resource-constrained IIoT devices often cannot meet the real-time requirements of these tasks. As a promising paradigm, the mobile-edge computing (MEC) system migrates the computation intensive tasks from resource-constrained IIoT devices to nearby MEC servers, thereby obtaining lower delay and energy consumption. However, considering the varying channel conditions as well as the distinct delay requirements for various computing tasks, it is challenging to coordinate the computing task offloading among multiple users. In this article, we propose an autonomous partial offloading system for delay-sensitive computation tasks in multiuser IIoT MEC systems. Our goal is to provide offloading services with minimum delay for better Quality of Service (QoS). Enlighten by the recent advancement of reinforcement learning (RL), we propose two RL-based offloading strategies to automatically optimize the delay performance. Specifically, we first implement the $Q$ -learning algorithm to provide a discrete partial offloading decision. Then, to further optimize the system performance with more flexible task offloading, the offloading decisions are given as continuous based on deep deterministic policy gradient (DDPG). The simulation results show that the $Q$ -learning scheme reduces the delay by 23%, and the DDPG scheme reduces the delay by 30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助lin采纳,获得10
1秒前
独特冰安发布了新的文献求助10
1秒前
内丹翠发布了新的文献求助10
2秒前
2秒前
h3完成签到,获得积分10
3秒前
清爽的机器猫完成签到 ,获得积分10
3秒前
独特冰安发布了新的文献求助10
4秒前
李创业发布了新的文献求助10
5秒前
华仔应助MaxWong采纳,获得10
5秒前
8R60d8应助虚幻蜗牛采纳,获得10
6秒前
jiafx发布了新的文献求助10
7秒前
h3发布了新的文献求助10
8秒前
高大的依秋完成签到,获得积分10
9秒前
mhq完成签到,获得积分20
11秒前
lin完成签到,获得积分10
11秒前
TAO发布了新的文献求助10
12秒前
无奈的白云完成签到,获得积分10
12秒前
12秒前
今后应助积极的睫毛采纳,获得10
12秒前
13秒前
13秒前
李创业完成签到,获得积分10
13秒前
我服有点黑完成签到,获得积分10
13秒前
李李完成签到,获得积分20
14秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
星落枝头完成签到,获得积分10
17秒前
XY发布了新的文献求助10
17秒前
MaxWong发布了新的文献求助10
18秒前
dktrrrr完成签到,获得积分10
21秒前
shiyi完成签到,获得积分10
23秒前
樱偶猫发布了新的文献求助10
23秒前
张大大完成签到,获得积分10
24秒前
mhq关注了科研通微信公众号
25秒前
XY完成签到,获得积分10
26秒前
无奈的白云关注了科研通微信公众号
26秒前
27秒前
28秒前
29秒前
希望天下0贩的0应助sunsiyu采纳,获得10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975378
求助须知:如何正确求助?哪些是违规求助? 3519775
关于积分的说明 11199621
捐赠科研通 3256067
什么是DOI,文献DOI怎么找? 1798124
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305