亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent Delay-Aware Partial Computing Task Offloading for Multiuser Industrial Internet of Things Through Edge Computing

计算机科学 移动边缘计算 服务器 任务(项目管理) 计算卸载 分布式计算 强化学习 边缘计算 计算机网络 GSM演进的增强数据速率 人工智能 经济 管理
作者
Xiaoheng Deng,Jian Yin,Peiyuan Guan,Naixue Xiong,Lan Zhang,Shahid Mumtaz
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (4): 2954-2966 被引量:144
标识
DOI:10.1109/jiot.2021.3123406
摘要

The development of Industrial Internet of Things (IIoT) and Industry 4.0 has completely changed the traditional manufacturing industry. Intelligent IIoT technology usually involves a large number of intensive computing tasks. Resource-constrained IIoT devices often cannot meet the real-time requirements of these tasks. As a promising paradigm, the mobile-edge computing (MEC) system migrates the computation intensive tasks from resource-constrained IIoT devices to nearby MEC servers, thereby obtaining lower delay and energy consumption. However, considering the varying channel conditions as well as the distinct delay requirements for various computing tasks, it is challenging to coordinate the computing task offloading among multiple users. In this article, we propose an autonomous partial offloading system for delay-sensitive computation tasks in multiuser IIoT MEC systems. Our goal is to provide offloading services with minimum delay for better Quality of Service (QoS). Enlighten by the recent advancement of reinforcement learning (RL), we propose two RL-based offloading strategies to automatically optimize the delay performance. Specifically, we first implement the $Q$ -learning algorithm to provide a discrete partial offloading decision. Then, to further optimize the system performance with more flexible task offloading, the offloading decisions are given as continuous based on deep deterministic policy gradient (DDPG). The simulation results show that the $Q$ -learning scheme reduces the delay by 23%, and the DDPG scheme reduces the delay by 30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33秒前
53秒前
阿俊完成签到 ,获得积分10
58秒前
shhoing应助科研通管家采纳,获得10
1分钟前
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
1分钟前
uss完成签到,获得积分10
1分钟前
sage_kakarotto完成签到 ,获得积分10
1分钟前
Akim应助王一博采纳,获得10
1分钟前
Sea_moon完成签到,获得积分10
1分钟前
TonyLee完成签到,获得积分10
2分钟前
2分钟前
王一博完成签到,获得积分10
2分钟前
王一博发布了新的文献求助10
3分钟前
3分钟前
petrichor发布了新的文献求助10
3分钟前
3分钟前
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
小丸子发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
Lucas应助小丸子采纳,获得30
4分钟前
4分钟前
大个应助兴奋稚晴采纳,获得10
4分钟前
荒天帝石昊完成签到,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
隐形曼青应助科研通管家采纳,获得50
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
顾矜应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
lalala完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538716
求助须知:如何正确求助?哪些是违规求助? 4625787
关于积分的说明 14596894
捐赠科研通 4566449
什么是DOI,文献DOI怎么找? 2503314
邀请新用户注册赠送积分活动 1481402
关于科研通互助平台的介绍 1452780