Spatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions

计算机科学 人工智能 地理空间分析 地点 深度学习 图形 多元统计 卷积神经网络 机器学习 人工神经网络 数据挖掘 模式识别(心理学) 地理 地图学 理论计算机科学 哲学 语言学
作者
Di Zhu,Yu Liu,Xin Yao,Manfréd M. Fischer
出处
期刊:Geoinformatica [Springer Nature]
卷期号:26 (4): 645-676 被引量:27
标识
DOI:10.1007/s10707-021-00454-x
摘要

Geospatial artificial intelligence (GeoAI) has emerged as a subfield of GIScience that uses artificial intelligence approaches and machine learning techniques for geographic knowledge discovery. The non-regularity of data structures has recently led to different variants of graph neural networks in the field of computer science, with graph convolutional neural networks being one of the most prominent that operate on non-euclidean structured data where the numbers of nodes connections vary and the nodes are unordered. These networks use graph convolution – commonly known as filters or kernels – in place of general matrix multiplication in at least one of their layers. This paper suggests spatial regression graph convolutional neural networks (SRGCNNs) as a deep learning paradigm that is capable of handling a wide range of geographical tasks where multivariate spatial data needs modeling and prediction. The feasibility of SRGCNNs lies in the feature propagation mechanisms, the spatial locality nature, and a semi-supervised training strategy. In the experiments, this paper demonstrates the operation of SRGCNNs with social media check-in data in Beijing and house price data in San Diego. The results indicate that a well-trained SRGCNN model is capable of learning from samples and performing reasonable predictions for unobserved locations. The paper also presents the effectiveness of incorporating the idea of geographically weighted regression for handling heterogeneity between locations in the model approach. Compared to conventional spatial regression approaches, SRGCNN-based models tend to generate much more accurate and stable results, especially when the sampling ratio is low. This study offers to bridge the methodological gap between graph deep learning and spatial regression analytics. The proposed idea serves as an example to illustrate how spatial analytics can be combined with state-of-the-art deep learning models, and to enlighten future research at the front of GeoAI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
11发布了新的文献求助10
3秒前
3秒前
刘艺珍发布了新的文献求助10
3秒前
everglow给bbecky的求助进行了留言
4秒前
完美世界应助时倾采纳,获得10
4秒前
雨听寒应助hhaxxszd采纳,获得10
4秒前
超级香之发布了新的文献求助10
5秒前
6秒前
DK_fish发布了新的文献求助10
6秒前
隐形曼青应助UPT采纳,获得10
7秒前
汉堡包应助冯冯申博了么采纳,获得10
8秒前
8秒前
9秒前
英姑应助intangible采纳,获得10
9秒前
PrayOne发布了新的文献求助10
10秒前
支初晴发布了新的文献求助20
12秒前
笑弯了眼完成签到,获得积分10
13秒前
123发布了新的文献求助10
14秒前
DXDXJX给DXDXJX的求助进行了留言
14秒前
14秒前
15秒前
17秒前
17秒前
11发布了新的文献求助10
18秒前
OAO发布了新的文献求助10
18秒前
李爱国应助背后书芹采纳,获得10
19秒前
深情安青应助Jacky采纳,获得10
20秒前
陶醉的鱼完成签到 ,获得积分10
21秒前
21秒前
22秒前
UPT发布了新的文献求助10
22秒前
23秒前
斯文败类应助吼隆隆隆采纳,获得10
23秒前
奋斗的小王医生完成签到,获得积分10
23秒前
lei完成签到,获得积分10
23秒前
sunny完成签到,获得积分10
24秒前
老木虫发布了新的文献求助10
24秒前
yue发布了新的文献求助10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663