TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios

计算机科学 人工智能 可解释性 无人机 分类器(UML) 对象(语法) 目标检测 机器学习 变压器 模式识别(心理学) 工程类 遗传学 生物 电气工程 电压
作者
Xingkui Zhu,Shuchang Lyu,Xu Wang,Qi Zhao
出处
期刊:International Conference on Computer Vision 卷期号:: 2778-2788 被引量:1480
标识
DOI:10.1109/iccvw54120.2021.00312
摘要

Object detection on drone-captured scenarios is a recent popular task. As drones always navigate in different altitudes, the object scale varies violently, which burdens the optimization of networks. Moreover, high-speed and low-altitude flight bring in the motion blur on the densely packed objects, which leads to great challenge of object distinction. To solve the two issues mentioned above, we propose TPH-YOLOv5. Based on YOLOv5, we add one more prediction head to detect different-scale objects. Then we replace the original prediction heads with Transformer Prediction Heads (TPH) to explore the prediction potential with self-attention mechanism. We also integrate convolutional block attention model (CBAM) to find attention region on scenarios with dense objects. To achieve more improvement of our proposed TPH-YOLOv5, we provide bags of useful strategies such as data augmentation, multi-scale testing, multi-model integration and utilizing extra classifier. Extensive experiments on dataset VisDrone2021 show that TPH-YOLOv5 have good performance with impressive interpretability on drone-captured scenarios. On DET-test-challenge dataset, the AP result of TPH-YOLOv5 are 39.18%, which is better than previous SOTA method (DPNetV3) by 1.81%. On VisDrone Challenge 2021, TPH-YOLOv5 wins 5 th place and achieves well-matched results with 1 st place model (AP 39.43%). Compared to baseline model (YOLOv5), TPH-YOLOv5 improves about 7%, which is encouraging and competitive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ameko809发布了新的文献求助10
1秒前
YaoHui发布了新的文献求助10
1秒前
2秒前
ala发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
外向从灵完成签到,获得积分10
5秒前
5秒前
知许解夏应助北彧采纳,获得10
8秒前
LC完成签到 ,获得积分10
8秒前
129753发布了新的文献求助10
9秒前
澳洲小肥牛完成签到,获得积分10
9秒前
彭于彦祖应助0384p采纳,获得200
9秒前
10秒前
深情安青应助猴哥好样的采纳,获得10
10秒前
水博士发布了新的文献求助10
11秒前
王线性完成签到,获得积分10
11秒前
黎尘完成签到,获得积分10
11秒前
素颜浅笑发布了新的文献求助20
12秒前
善学以致用应助六点一横采纳,获得10
12秒前
猪猪hero应助顺心的巨人采纳,获得10
13秒前
轩辕一笑发布了新的文献求助10
13秒前
yjj关闭了yjj文献求助
13秒前
14秒前
14秒前
夏风发布了新的文献求助10
16秒前
CipherSage应助姜懿采纳,获得10
16秒前
Eacom完成签到,获得积分10
16秒前
17秒前
lili发布了新的文献求助10
19秒前
19秒前
CodeCraft应助SDNUDRUG采纳,获得10
19秒前
21秒前
阿胡发布了新的文献求助30
21秒前
DJANGO发布了新的文献求助10
21秒前
星辰大海应助嘻嘻乙烯采纳,获得10
21秒前
22秒前
知许解夏应助lu采纳,获得10
25秒前
研白发布了新的文献求助10
27秒前
27秒前
亓钰发布了新的文献求助10
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961170
求助须知:如何正确求助?哪些是违规求助? 3507441
关于积分的说明 11136135
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790456
邀请新用户注册赠送积分活动 872439
科研通“疑难数据库(出版商)”最低求助积分说明 803152