TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios

计算机科学 人工智能 可解释性 无人机 分类器(UML) 对象(语法) 目标检测 机器学习 变压器 模式识别(心理学) 工程类 遗传学 生物 电气工程 电压
作者
Xingkui Zhu,Shuchang Lyu,Xu Wang,Qi Zhao
出处
期刊:International Conference on Computer Vision 卷期号:: 2778-2788 被引量:1908
标识
DOI:10.1109/iccvw54120.2021.00312
摘要

Object detection on drone-captured scenarios is a recent popular task. As drones always navigate in different altitudes, the object scale varies violently, which burdens the optimization of networks. Moreover, high-speed and low-altitude flight bring in the motion blur on the densely packed objects, which leads to great challenge of object distinction. To solve the two issues mentioned above, we propose TPH-YOLOv5. Based on YOLOv5, we add one more prediction head to detect different-scale objects. Then we replace the original prediction heads with Transformer Prediction Heads (TPH) to explore the prediction potential with self-attention mechanism. We also integrate convolutional block attention model (CBAM) to find attention region on scenarios with dense objects. To achieve more improvement of our proposed TPH-YOLOv5, we provide bags of useful strategies such as data augmentation, multi-scale testing, multi-model integration and utilizing extra classifier. Extensive experiments on dataset VisDrone2021 show that TPH-YOLOv5 have good performance with impressive interpretability on drone-captured scenarios. On DET-test-challenge dataset, the AP result of TPH-YOLOv5 are 39.18%, which is better than previous SOTA method (DPNetV3) by 1.81%. On VisDrone Challenge 2021, TPH-YOLOv5 wins 5 th place and achieves well-matched results with 1 st place model (AP 39.43%). Compared to baseline model (YOLOv5), TPH-YOLOv5 improves about 7%, which is encouraging and competitive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmmmmMM发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
香蕉觅云应助火柴two采纳,获得10
1秒前
zxx发布了新的文献求助10
1秒前
奶黄包应助刘鑫采纳,获得20
1秒前
hhh完成签到,获得积分10
1秒前
布兜兜完成签到,获得积分10
2秒前
2秒前
2秒前
白诺言发布了新的文献求助10
3秒前
星辰大海应助江江采纳,获得10
3秒前
3秒前
lololoan完成签到,获得积分10
3秒前
3秒前
特大包包发布了新的文献求助10
4秒前
莲枳榴莲发布了新的文献求助30
4秒前
婷_1988完成签到,获得积分10
5秒前
思源应助暴躁的元灵采纳,获得10
5秒前
无花果应助hhh采纳,获得10
5秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
追寻德地发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
结构小工完成签到,获得积分10
8秒前
JamesPei应助魏士博采纳,获得10
8秒前
脑洞疼应助ANDUIN采纳,获得10
9秒前
小闵发布了新的文献求助10
10秒前
昭昭如愿发布了新的文献求助10
10秒前
上官若男应助真白白鸭采纳,获得10
10秒前
香蕉觅云应助汤圆有奶瓶采纳,获得10
11秒前
赘婿应助长白采纳,获得10
11秒前
11秒前
卡皮巴拉yuan应助sy采纳,获得10
11秒前
黎明森发布了新的文献求助10
11秒前
12秒前
关关过应助yuk采纳,获得20
13秒前
东晓发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444