TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios

计算机科学 人工智能 可解释性 无人机 分类器(UML) 对象(语法) 目标检测 机器学习 变压器 模式识别(心理学) 工程类 遗传学 生物 电气工程 电压
作者
Xingkui Zhu,Shuchang Lyu,Xu Wang,Qi Zhao
出处
期刊:International Conference on Computer Vision 卷期号:: 2778-2788 被引量:1859
标识
DOI:10.1109/iccvw54120.2021.00312
摘要

Object detection on drone-captured scenarios is a recent popular task. As drones always navigate in different altitudes, the object scale varies violently, which burdens the optimization of networks. Moreover, high-speed and low-altitude flight bring in the motion blur on the densely packed objects, which leads to great challenge of object distinction. To solve the two issues mentioned above, we propose TPH-YOLOv5. Based on YOLOv5, we add one more prediction head to detect different-scale objects. Then we replace the original prediction heads with Transformer Prediction Heads (TPH) to explore the prediction potential with self-attention mechanism. We also integrate convolutional block attention model (CBAM) to find attention region on scenarios with dense objects. To achieve more improvement of our proposed TPH-YOLOv5, we provide bags of useful strategies such as data augmentation, multi-scale testing, multi-model integration and utilizing extra classifier. Extensive experiments on dataset VisDrone2021 show that TPH-YOLOv5 have good performance with impressive interpretability on drone-captured scenarios. On DET-test-challenge dataset, the AP result of TPH-YOLOv5 are 39.18%, which is better than previous SOTA method (DPNetV3) by 1.81%. On VisDrone Challenge 2021, TPH-YOLOv5 wins 5 th place and achieves well-matched results with 1 st place model (AP 39.43%). Compared to baseline model (YOLOv5), TPH-YOLOv5 improves about 7%, which is encouraging and competitive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
金磊完成签到,获得积分10
1秒前
hailiangzheng发布了新的文献求助10
1秒前
传奇3应助调皮帆布鞋采纳,获得10
2秒前
percy完成签到 ,获得积分10
2秒前
2秒前
林小雨发布了新的文献求助10
3秒前
Bellona完成签到,获得积分10
3秒前
清嘉完成签到,获得积分10
3秒前
ZZY完成签到,获得积分10
4秒前
4秒前
魁梧的钧发布了新的文献求助20
4秒前
Fishchips发布了新的文献求助10
4秒前
4秒前
SciGPT应助tS717采纳,获得10
5秒前
自觉的涵易完成签到 ,获得积分10
5秒前
Hello应助自由南珍采纳,获得10
6秒前
苹果煎饼完成签到,获得积分10
7秒前
7秒前
杨小冬发布了新的文献求助10
7秒前
倒霉蛋完成签到,获得积分10
8秒前
庄严发布了新的文献求助10
8秒前
2401发布了新的文献求助10
8秒前
8秒前
8秒前
zhaoqing完成签到,获得积分10
9秒前
9秒前
充电宝应助han采纳,获得10
10秒前
11秒前
ajiduo发布了新的文献求助10
12秒前
聿潇发布了新的文献求助10
13秒前
13秒前
华枝春满发布了新的文献求助10
13秒前
Islet1810发布了新的文献求助10
14秒前
14秒前
两米七发布了新的文献求助20
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406668
求助须知:如何正确求助?哪些是违规求助? 4524470
关于积分的说明 14098590
捐赠科研通 4438297
什么是DOI,文献DOI怎么找? 2436104
邀请新用户注册赠送积分活动 1428223
关于科研通互助平台的介绍 1406294