亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of Machine Learning Methods Developed for Prediction of Diabetes Complications: A Systematic Review

检查表 医学 科克伦图书馆 接收机工作特性 糖尿病 梅德林 随机森林 系统回顾 机器学习 预测建模 人口 2型糖尿病 人工智能 荟萃分析 内科学 计算机科学 统计 数学 心理学 法学 认知心理学 内分泌学 环境卫生 政治学
作者
Kuo Ren Tan,Jun Jie Benjamin Seng,Yu Heng Kwan,Ying Jie Chen,Sueziani Binte Zainudin,Dionne Hui Fang Loh,Nan Liu,Lian Leng Low
出处
期刊:Journal of diabetes science and technology [SAGE]
卷期号:17 (2): 474-489 被引量:39
标识
DOI:10.1177/19322968211056917
摘要

Background: With the rising prevalence of diabetes, machine learning (ML) models have been increasingly used for prediction of diabetes and its complications, due to their ability to handle large complex data sets. This study aims to evaluate the quality and performance of ML models developed to predict microvascular and macrovascular diabetes complications in an adult Type 2 diabetes population. Methods: A systematic review was conducted in MEDLINE®, Embase®, the Cochrane® Library, Web of Science®, and DBLP Computer Science Bibliography databases according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist. Studies that developed or validated ML prediction models for microvascular or macrovascular complications in people with Type 2 diabetes were included. Prediction performance was evaluated using area under the receiver operating characteristic curve (AUC). An AUC >0.75 indicates clearly useful discrimination performance, while a positive mean relative AUC difference indicates better comparative model performance. Results: Of 13 606 articles screened, 32 studies comprising 87 ML models were included. Neural networks (n = 15) were the most frequently utilized. Age, duration of diabetes, and body mass index were common predictors in ML models. Across predicted outcomes, 36% of the models demonstrated clearly useful discrimination. Most ML models reported positive mean relative AUC compared with non-ML methods, with random forest showing the best overall performance for microvascular and macrovascular outcomes. Majority (n = 31) of studies had high risk of bias. Conclusions: Random forest was found to have the overall best prediction performance. Current ML prediction models remain largely exploratory, and external validation studies are required before their clinical implementation. Protocol Registration: Open Science Framework (registration number: 10.17605/OSF.IO/UP49X).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助魏欣娜采纳,获得10
3秒前
研友_VZG7GZ应助orangel采纳,获得10
9秒前
11秒前
金沐栋发布了新的文献求助10
14秒前
32秒前
Rachel发布了新的文献求助10
37秒前
53秒前
魏欣娜发布了新的文献求助10
58秒前
orixero应助契合采纳,获得20
59秒前
1分钟前
Lucas应助潇洒荧荧采纳,获得10
1分钟前
契合发布了新的文献求助20
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
CodeCraft应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
隐形曼青应助踏实白柏采纳,获得10
1分钟前
研友_VZG7GZ应助契合采纳,获得20
1分钟前
大个应助淡然的念珍采纳,获得10
2分钟前
夹心就是嘉欣呀完成签到,获得积分10
2分钟前
2分钟前
今后应助夹心就是嘉欣呀采纳,获得10
2分钟前
华西招生版完成签到,获得积分10
2分钟前
契合发布了新的文献求助20
2分钟前
慕青应助Huzhu采纳,获得10
2分钟前
2分钟前
风华正茂完成签到,获得积分10
2分钟前
2分钟前
123发布了新的文献求助10
2分钟前
群山完成签到 ,获得积分10
2分钟前
2分钟前
魏欣娜发布了新的文献求助10
2分钟前
科目三应助badabadaba采纳,获得30
3分钟前
阿瓜师傅发布了新的文献求助10
3分钟前
NI完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476330
求助须知:如何正确求助?哪些是违规求助? 4577995
关于积分的说明 14363306
捐赠科研通 4505871
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430177