已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluation of Machine Learning Methods Developed for Prediction of Diabetes Complications: A Systematic Review

检查表 医学 科克伦图书馆 接收机工作特性 糖尿病 梅德林 随机森林 系统回顾 机器学习 预测建模 人口 2型糖尿病 人工智能 荟萃分析 内科学 计算机科学 心理学 认知心理学 法学 内分泌学 环境卫生 政治学
作者
Kuo Ren Tan,Jun Jie Benjamin Seng,Yu Heng Kwan,Ying Jie Chen,Sueziani Binte Zainudin,Dionne Hui Fang Loh,Nan Liu,Lian Leng Low
出处
期刊:Journal of diabetes science and technology [SAGE]
卷期号:17 (2): 474-489 被引量:10
标识
DOI:10.1177/19322968211056917
摘要

With the rising prevalence of diabetes, machine learning (ML) models have been increasingly used for prediction of diabetes and its complications, due to their ability to handle large complex data sets. This study aims to evaluate the quality and performance of ML models developed to predict microvascular and macrovascular diabetes complications in an adult Type 2 diabetes population.A systematic review was conducted in MEDLINE®, Embase®, the Cochrane® Library, Web of Science®, and DBLP Computer Science Bibliography databases according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist. Studies that developed or validated ML prediction models for microvascular or macrovascular complications in people with Type 2 diabetes were included. Prediction performance was evaluated using area under the receiver operating characteristic curve (AUC). An AUC >0.75 indicates clearly useful discrimination performance, while a positive mean relative AUC difference indicates better comparative model performance.Of 13 606 articles screened, 32 studies comprising 87 ML models were included. Neural networks (n = 15) were the most frequently utilized. Age, duration of diabetes, and body mass index were common predictors in ML models. Across predicted outcomes, 36% of the models demonstrated clearly useful discrimination. Most ML models reported positive mean relative AUC compared with non-ML methods, with random forest showing the best overall performance for microvascular and macrovascular outcomes. Majority (n = 31) of studies had high risk of bias.Random forest was found to have the overall best prediction performance. Current ML prediction models remain largely exploratory, and external validation studies are required before their clinical implementation.Open Science Framework (registration number: 10.17605/OSF.IO/UP49X).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
嗯哼应助好运来采纳,获得10
3秒前
无机盐完成签到,获得积分10
3秒前
3秒前
Aaa_12012完成签到,获得积分0
3秒前
gmchen完成签到,获得积分10
3秒前
4秒前
6秒前
苏小喵完成签到 ,获得积分10
6秒前
晴云发布了新的文献求助10
6秒前
8秒前
9秒前
9秒前
科研通AI2S应助YY采纳,获得10
10秒前
Feifei133发布了新的文献求助10
11秒前
嗯哼应助12采纳,获得30
12秒前
海潮发布了新的文献求助10
12秒前
LL发布了新的文献求助10
12秒前
Xu完成签到 ,获得积分10
13秒前
科研达人发布了新的文献求助10
14秒前
16秒前
所所应助wangjw采纳,获得10
16秒前
16秒前
18秒前
学好英语发布了新的文献求助10
18秒前
Hello应助千迁jiu采纳,获得10
18秒前
落寞臻发布了新的文献求助10
20秒前
tengzijing完成签到,获得积分10
25秒前
weilanhaian发布了新的文献求助10
27秒前
哼小盏发布了新的文献求助10
28秒前
居居应助科研通管家采纳,获得10
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
san发布了新的文献求助200
29秒前
30秒前
XX完成签到 ,获得积分10
31秒前
Leo963852完成签到 ,获得积分10
31秒前
32秒前
科研通AI2S应助singlestrand采纳,获得10
34秒前
Feifei133完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158476
求助须知:如何正确求助?哪些是违规求助? 2809636
关于积分的说明 7883011
捐赠科研通 2468293
什么是DOI,文献DOI怎么找? 1314048
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601956