Evaluation of Machine Learning Methods Developed for Prediction of Diabetes Complications: A Systematic Review

检查表 医学 科克伦图书馆 接收机工作特性 糖尿病 梅德林 随机森林 系统回顾 机器学习 预测建模 人口 2型糖尿病 人工智能 荟萃分析 内科学 计算机科学 统计 数学 心理学 法学 认知心理学 内分泌学 环境卫生 政治学
作者
Kuo Ren Tan,Jun Jie Benjamin Seng,Yu Heng Kwan,Ying Jie Chen,Sueziani Binte Zainudin,Dionne Hui Fang Loh,Nan Liu,Lian Leng Low
出处
期刊:Journal of diabetes science and technology [SAGE Publishing]
卷期号:17 (2): 474-489 被引量:39
标识
DOI:10.1177/19322968211056917
摘要

Background: With the rising prevalence of diabetes, machine learning (ML) models have been increasingly used for prediction of diabetes and its complications, due to their ability to handle large complex data sets. This study aims to evaluate the quality and performance of ML models developed to predict microvascular and macrovascular diabetes complications in an adult Type 2 diabetes population. Methods: A systematic review was conducted in MEDLINE®, Embase®, the Cochrane® Library, Web of Science®, and DBLP Computer Science Bibliography databases according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist. Studies that developed or validated ML prediction models for microvascular or macrovascular complications in people with Type 2 diabetes were included. Prediction performance was evaluated using area under the receiver operating characteristic curve (AUC). An AUC >0.75 indicates clearly useful discrimination performance, while a positive mean relative AUC difference indicates better comparative model performance. Results: Of 13 606 articles screened, 32 studies comprising 87 ML models were included. Neural networks (n = 15) were the most frequently utilized. Age, duration of diabetes, and body mass index were common predictors in ML models. Across predicted outcomes, 36% of the models demonstrated clearly useful discrimination. Most ML models reported positive mean relative AUC compared with non-ML methods, with random forest showing the best overall performance for microvascular and macrovascular outcomes. Majority (n = 31) of studies had high risk of bias. Conclusions: Random forest was found to have the overall best prediction performance. Current ML prediction models remain largely exploratory, and external validation studies are required before their clinical implementation. Protocol Registration: Open Science Framework (registration number: 10.17605/OSF.IO/UP49X).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhhhhh应助喵喵采纳,获得10
1秒前
ccyy完成签到 ,获得积分10
2秒前
小陈完成签到,获得积分10
2秒前
精明翠曼发布了新的文献求助10
2秒前
所所应助孙老师采纳,获得10
3秒前
华仔应助aaaa采纳,获得10
3秒前
默然轻快完成签到,获得积分10
3秒前
笨笨梦松完成签到,获得积分10
3秒前
¥#¥-11完成签到,获得积分10
3秒前
ccc完成签到 ,获得积分10
4秒前
Chandler完成签到,获得积分10
4秒前
4秒前
猪猪完成签到,获得积分10
4秒前
隐形曼青应助鲨野博士采纳,获得10
5秒前
5秒前
yxy发布了新的文献求助10
5秒前
呆萌幻竹完成签到 ,获得积分10
6秒前
6秒前
请叫我风吹麦浪应助FCZ采纳,获得10
7秒前
chendahuanhuan完成签到,获得积分10
8秒前
8秒前
WHR完成签到,获得积分10
9秒前
XNM发布了新的文献求助10
9秒前
xuzj完成签到,获得积分10
9秒前
苗小旦发布了新的文献求助10
9秒前
钟迪完成签到,获得积分10
9秒前
自信大雁发布了新的文献求助10
9秒前
学术牛马完成签到,获得积分10
10秒前
摩诃萨完成签到,获得积分10
10秒前
10秒前
小蒋完成签到,获得积分20
10秒前
西门追命完成签到,获得积分10
11秒前
专注黑猫关注了科研通微信公众号
12秒前
TheBugsss完成签到,获得积分10
12秒前
12秒前
Akim应助jiabaoyu采纳,获得10
13秒前
13秒前
13秒前
碧蓝雨安发布了新的文献求助10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259